Answer:
The slope is $0.35/min and it gives the cost per minute of the phone used.
Step-by-step explanation:
We can model this situation with a linear equation of the form

where
is monthly cost,
is the number of minutes,
is the flat monthly fee, and
is the slope of the equation, or in our case, the amount of money charged per minute.
The slope
is

,
in other words, the phone company charges $0.5 per minute.
With the slope in hand, the linear equation becomes
,
and we can find the monthly fee
from that fact that for 300 minutes the cost is $131:

.
Therefore,

where the slope if the equation give the cost per minute of the phone used.
Answer:
2.897
Step-by-step explanation:
Let us find the mean and variance for the sample first.
105 104 110 112
114 106 108 109
Mean = sum/8 = 108.5
Variance = 12
Std dev = sq rt of variance = 3.464
Std error = std dev/ sq rt n
since n =8, we get std error = 1.225
Since sample size is small, df =8-1 =7
For 95% confidence intervals, t critical value for two tailed=2.365
Margin of error = std error x t critical = 1.225(2.365)
=2.897
Answer:
<em><u>Answer is below</u></em>
Step-by-step explanation:
<u><em>3+5(2−3)−6</em></u>
<u><em>=3+(5)(−1)−6</em></u>
<u><em>=3+−5−6</em></u>
<u><em>=3+−11</em></u>
<u><em>=−8</em></u>
<u><em>So therefore, your answer would be -8</em></u>
Answer:
-0.8x + 4.8y + 16
Step-by-step explanation:
4(0.5x+2.5y-0.7x-1.3y+4) = 4( 0.5x - 0.7x + 2.5y - 1.3y + 4)
= 4( -0.2x + 1.2y + 4)
= 4*(-0.2x) + 4 *1.2y + 4*4
= -0.8x + 4.8y + 16