Answer:
One solution.
Step-by-step explanation:
To determine the number of possible solutions for a triangle with A = 113° , a = 15, and b = 8, we're going to use the law of sines which states that: "<em>When we divide side a by the sine of angle A it is equal to side b divided by the sine of angle B, and also equal to side c divided by the sine of angle C</em>".
Using the law of sines we have:


Solving for B, we have:

∠B = 29.4°
Therefore, the measure of the third angle is: ∠C = 37.6°
There is another angle whose sine is 0.4909 which is 180° - 29.4° = 150.6 degrees. Given that the sum of all three angles of any triangle must be equal to 180 deg, we can't have a triangle with angle B=113° and C=150.6°, because B+C>180.
Therefore, there is one triangle that satisfies the conditions.
Answer:
I don't understand the instructions, but I'll answer the question in the picture.
The angle next to 52 is vertical to y, so, 90-52=y.
Thus, y=38
Simplified form : 17y + 7
Answer:
6.5
Step-by-step explanation:
Answer:

Step-by-step explanation:
The <u>width</u> of a square is its <u>side length</u>.
The <u>width</u> of a circle is its <u>diameter</u>.
Therefore, the largest possible circle that can be cut out from a square is a circle whose <u>diameter</u> is <u>equal in length</u> to the <u>side length</u> of the square.
<u>Formulas</u>



If the diameter is equal to the side length of the square, then:

Therefore:

So the ratio of the area of the circle to the original square is:

Given:
- side length (s) = 6 in
- radius (r) = 6 ÷ 2 = 3 in


Ratio of circle to square:
