<span>The boiling point of a substance is higher than its freezing point</span>
The reactant in a chemical process known as the limiting reactant controls how much product can be produced. When the limiting reactant is completely used up, the reaction will come to an end.
<h3>
Find the limiting reactant ?</h3>
- As a result of 1 mol Sb4O6 reacting with 6 mol H2SO4, only 0.1 mol Sb4O6 reacts with 0.6 mol H2SO4, leaving only 0.5 mol H2SO4. This indicates that H2SO4 is the limiting reactant and Sb4O6 is present in excess.
- According to your equation, which is balanced, 0.1 mol Sb4O6 should react with 0.6 mol H2SO4, yet there is only 0.5 mol H2SO4 on hand.
- Therefore, only.083 mol of Sb4O6 are reacted.
- The reactant that is present in the limiting amount—the limiting reactant—determines the extent to which a chemical reaction occurs.
- The trick is really quite easy! We employ an augmented matrix to hold the data derived from the balancing equation Sb4O6 + 6H2SO4 --> 2Sb2(SO4)3 + 6H2O.
- Although you are provided 0.5 mol of H2SO4, the reaction requires 0.6 mol. Therefore, the limiting reactant is H2SO4.
- Only 0.0833 mol of Sb4O6 is required, but you have 0.1 mol. Sb4O6 is therefore the extra reactant.
To learn more about limiting reactant refer to:
brainly.com/question/27986321
#SPJ1
Answer:
Over time, excessive alcohol use can lead to the development of chronic diseases and other serious problems including: High blood pressure, heart disease, stroke, liver disease, and digestive problems. Cancer of the breast, mouth, throat, esophagus, liver, and colon.
B. A bond between two atoms: it doesn't matter if it's positive or negative or neutral, if there is a bond between two atoms, it is covalent.
Answer: The molarity of solution is 7.45 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in ml
moles of
=
Now put all the given values in the formula of molality, we get
Therefore, the molarity of solution is 7.45 M