Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
The amplitude of the wave is the 'full height of the wave.' Amplitude is measured in m (meters) and is measured over the change of a single period.
It is true because <span>A pyramid of biomass is a representation of the amount of energy contained in biomass, at different trophic levels for a given point in time . The amount of energy available to one trophic level is limited by the amount stored by the level below. Because energy is lost in the transfer from one level to the next, there is successively less total energy as you move up trophic levels. Tree is a base as it provides food and energy.</span>
Answer:
Explanation:
Question is incomplete
Assuming the question you have asked is
You are driving home from school steadily at 95 km/h for 180 km. It then begins to rain and you slow to 65 km/h. You arrive home after driving 4.5 h.
given,
speed of 95 km/h for 180 km
due to rain
speed is reduced to 65 km/h
distance traveled in 4.5 hour
time taken to travel 180 km
d = s x t

t = 1.9 hr
distance traveled in time, t' = 4.5-1.9 = 2.6 hr
Speed of vehicle = 65 Km/h
d' = s x t'
d' = 65 x 2.6
d'= 169 Km
total distance your hometown from school
D = d + d'
D = 180 + 169
D = 349 Km