If the height of the cannon and the ground are the same and in the absence of air resistance, the fact that it is moving horizontally changes nothing from a static problem in which a 45 degree angle gives maximum x-axis displacement.
Answer:
The elastic extensibility of a piece of string is .08. If the string is 100 cm long, how long will the string be when it is stretched to the point where it becomes plastic? is your ansewer dont take tension
Answer:
μ = 0.0315
Explanation:
Since the car moves on a horizontal surface, if we sum forces equal to zero on the Y-axis, we can determine the value of the normal force exerted by the ground on the vehicle. This force is equal to the weight of the cart (product of its mass by gravity)
N = m*g (1)
The friction force is equal to the product of the normal force by the coefficient of friction.
F = μ*N (2)
This way replacing 1 in 2, we have:
F = μ*m*g (2)
Using the theorem of work and energy, which tells us that the sum of the potential and kinetic energies and the work done on a body is equal to the final kinetic energy of the body. We can determine an equation that relates the frictional force to the initial speed of the carriage, so we will determine the coefficient of friction.

where:
vf = final velocity = 0
vi = initial velocity = 85 [km/h] = 23.61 [m/s]
d = displacement = 900 [m]
F = friction force [N]
The final velocity is zero since when the vehicle has traveled 900 meters its velocity is zero.
Now replacing:
(1/2)*m*(23.61)^2 = μ*m*g*d
0.5*(23.61)^2 = μ*9,81*900
μ = 0.0315
Answer:
1.324 × 10⁷ m
Explanation:
The centripetal acceleration, a at that height above the earth equal the acceleration due to gravity, g' at that height, h.
Let R be the radius of the orbit where R = RE + h, RE = radius of earth = 6.4 × 10⁶ m.
We know a = Rω² and g' = GME/R² where ω = angular speed = 2π/T where T = period of rotation = 1 day = 8.64 × 10⁴s (since the shuttle's period is synchronized with that of the Earth's rotation), G = gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg², ME = mass of earth = 6 × 10²⁴ kg. Since a = g', we have
Rω² = GME/R²
R(2π/T)² = GME/R²
R³ = GME(T/2π)²
R = ∛(GME)(T/2π)²
RE + h = ∛(GMET²/4π²)
h = ∛(GMET²/4π²) - RE
substituting the values of the variables, we have
h = ∛(6.67 × 10⁻¹¹ Nm²/kg² × 6 × 10²⁴ kg × (8.64 × 10⁴s)²/4π²) - 6.4 × 10⁶ m
h = ∛(2,987,477 × 10²⁰/4π² Nm²s²/kg) - 6.4 × 10⁶ m
h = ∛75.67 × 10²⁰ m³ - 6.4 × 10⁶ m
h = ∛(7567 × 10¹⁸ m³) - 6.4 × 10⁶ m
h = 19.64 × 10⁶ m - 6.4 × 10⁶ m
h = 13.24 × 10⁶ m
h = 1.324 × 10⁷ m