Answer:
426.84 m
Explanation:
initial velocity u = 0
time t = 3.3 s
distance travelled s = 53.4 m
acceleration due to gravity = g
s = ut + 1/2 g t²
53.4 = 0 + 1/2 g x 3.3²
g = 9.8 m /s²
For the whole length of fall
distance travelled = h
total time = 6.6 + 3.3 = 9.9 s
h = ut + 1/2 g t²
u again = 0
h = .5 x 9.8 x 9.9²
= 480.24 m
distance travelled in last 6.6 s
= 480.24 - 53.4
= 426.84 m
Answer:
The force must increase
Explanation:
According to newton's second law "force is the product of mass and acceleration".
Force = mass x acceleration
Now, the mass of the sports car is lesser compared to that of the truck. Therefore, to take both automobiles to the same speed, enough force must be applied by the engine of the truck.
There must be an increase in the force in order to make both automobiles attain the same speed.
The volume of a cylinder is given by the formula v=pi r^2h, where r is the radius of the cylinder and h is the height.
<h3>What Does a Cylinder's Surface Area Look Like?</h3>
The overall area or region that the surface of a cylinder covers is referred to as its surface area. A cylinder's total surface area includes both the area of the curved surface and the area of the two flat surfaces because there are two flat surfaces and one curved surface. A cylinder's surface area is measured in square units like m2, in2, cm2, yd2, etc.
<h3>What is the cylinder's total surface area?</h3>
The sum of the curved surface areas makes up the cylinder's overall surface area.
To know more about cylinder surface visit:-
brainly.com/question/22074027
#SPJ4
The distance between two basket ball sized aluminium balls is 9714 m.
Explanation:
Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force .
Coulomb's law formula => F = (k * Qb1 * Qb2)/r²
Given data :-
charge on ball 1 Qb1 = 6C
charge on ball 2 Qb2 = 14C
Force exerted F = 8000 N
k = 8.988 x 10^9 Nm²C−²(coulomb's constant).
substituting given values in the coulomb's formula
8000 = (( 8.988 x 10^9)*6*14)/r²
shifting r and 8000 to other sides
r² = (756 * 10^9)/8000
r = 9714 m.
Therefore the distance between two balls is r = 9714 m.