Answer:
12.7m/s
Explanation:
Given parameters:
Mass of the diver = 77kg
Height = 8.18m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we use one of the motion equations.
v² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
h is the height
v² = 0² + (2 x 9.8 x 8.18)
v² = 160.3
v = 12.7m/s
Instantaneous velocity, on the other hand, describes the motion of a body at one particular moment in time. Acceleration is a vector which shows the direction and magnitude of changes in velocity. Its standard units are meters per second per second, or meters per second squared. (this is for number 3)
Answer:
Object 3 has greatest acceleration.
Explanation:
Objects Mass Force
1 10 kg 4 N
2 100 grams 20 N
3 10 grams 4 N
4 1 kg 20 N
Acceleration of object 1,

Acceleration of object 2,

Acceleration of object 3,

Acceleration of object 4,

It is clear that the acceleration of object 3 is
and it is greatest of all. So, the correct option is (3).
Answer:
An example of kinetic energy is a <u><em>car coming to a stop</em></u>
Explanation:
Kinetic energy is the energy that a body or system possesses due to its movement. In physics this energy is defined as the amount of work necessary to accelerate a body of a certain mass and in rest position, until reaching a certain speed. This energy obtained will remain unchanged as long as this body does not vary its speed. That is, kinetic energy measures how many changes an object that is moving can cause.
<u><em>An example of kinetic energy is a car coming to a stop</em></u>. If the car is moving and comes to a stop, there is a change in speed, therefore in movement, eventually producing a change in kinetic energy. This energy depends on the mass of the body, in this case the car, and the speed. As the speed decreases, the kinetic energy will decrease.
20Ah is the number of charge that can be supplied at 20A for 1 hour. If you wish to drain it in 19 minutes, then the current is:
