The reason as to why the substage condenser does not need to be included in computing the magnification and the only component needed is the ocular lens and the objective lenses is because the condenser is only responsible for gathering light and it does not contribute with the magnification of the object under the microscope.
Answer:
yyyggggggggggggggthhgggggyyyyy
Explanation:
yyygggggggggggg
Answer:
No, it is not attracted.
Explanation:
If any sphere is electrically neutral it is not attracted. The materials which are attracted by magnet are called magnetic material whereas which are not attracted are called non magnetic material. Sphere made up of non magnetic materials such as glass, wood, paper will not attracted weather is kept near north pole or near south pole.
Answer:
given
y=6.0sin(0.020px + 4.0pt)
the general wave equation moving in the positive directionis
y(x,t) = ymsin(kx -?t)
a) the amplitude is
ym = 6.0cm
b)
we have the angular wave number as
k = 2p /?
or
? = 2p / 0.020p
=1.0*102cm
c)
the frequency is
f = ?/2p
= 4p/2p
= 2.0 Hz
d)
the wave speed is
v = f?
= (100cm)(2.0Hz)
= 2.0*102cm/s
e)
since the trignometric function is (kx -?t) , sothe wave propagates in th -x direction
f)
the maximum transverse speed is
umax =2pfym
= 2p(2.0Hz)(6.0cm)
= 75cm/s
g)
we have
y(3.5cm ,0.26s) = 6.0cmsin[0.020p(3.5) +4.0p(0.26)]
= -2.0cm
"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way.
-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down. It's just as if there's nobody sitting on it.
-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move. The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.
-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her. If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.
From these examples, you can see a few things:
-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.
-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.
-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.