Answer:
D because those are both concerning.
the equation of the tangent line must be passed on a point A (a,b) and
perpendicular to the radius of the circle. <span>
I will take an example for a clear explanation:
let x² + y² = 4 is the equation of the circle,
its center is C(0,0). And we assume that the tangent line passes to the point
A(2.3).
</span>since the tangent passes to the A(2,3), the line must be perpendicular to the radius of the circle.
<span>Let's find the equation of the line parallel to the radius.</span>
<span>The line passes to the A(2,3) and C (0,0). y= ax+b is the standard form of the equation. AC(-2, -3) is a vector parallel to CM(x, y).</span>
det(AC, CM)= -2y +3x =0, is the equation of the line // to the radius.
let's find the equation of the line perpendicular to this previous line.
let M a point which lies on the line. so MA.AC=0 (scalar product),
it is (2-x, 3-y) . (-2, -3)= -4+4x + -9+3y=4x +3y -13=0 is the equation of tangent
Answer:
(a)
(b) h is the same
Explanation:
According to the law of conservation of energy:

The skier starts from rest, so
and we choose the zero point of potential energy in the end of the ramp, so
. We calculate the final speed, that is, the speed when the skier leaves the ramp:

Finally, we calculate the maximum height h above the end of the ramp:

The initial vertical speed is given by:

and the final speed is zero, solving for h:

(b) We can observe that the height reached does not depend on the mass of the skier
Answer:
The graphic organizers help to keep track of the details. They are a visual representation of knowledge that rescue the important aspects of a concept using labels within a scheme. They also present information in a concise manner, highlighting the organization and the relationship of the concepts. Graphic organizers help students organize their thinking process and their writing.
Explanation: