Answer:
0.153M
Explanation:
57.3/97.994 (molar mass)=0.585 moles of H3PO4
.0585/3.820L=0.153M
Balanced chemical reaction: 2CH₄(g) ⇄ C₂H₂(g) + 3H₂(g).
1) In a chemical reaction, chemical equilibrium is the state in which both reactants (methane CH₄) and products (ethyne C₂H₂ and hydrogen H₂) are present in concentrations which have no further tendency to change with time.
2) At equilibrium, both the forward and reverse reactions are still occurring.
3) Reaction rates of the forward and backward reactions are equal and there are no changes in the concentrations of the reactants and products.
I think this is the answer you was looking for hope this helps !!!
Answer:
Explanation:
SO; If we assume that:
P should be the diffusion of oxygen towards the surface ; &
Q should be the diffusion of carbondioxide away from the surface.
Then the total molar flux of oxygen is illustrated by
:

where;
r is the radial distance from the center of the carbon particle.
Since ;
; we have:

The system is not steady state and the molar flux is not independent of r because the area of mass transfer
is not a constant term.
Therefore, using quasi steady state assumption, the mass transfer rate
is assumed to be independent of r at any instant of time.

= constant
The oxygen concentration at the surface of the coal particle
will be calculated from the reaction at the surface.
The mole fraction of oxygen at a location far from pellet is 1.
Thus, separating the variables and integrating result into the following:




The mole of oxygen arrived at the carbon surface is equal to the mole of oxygen consumed by the chemical reaction.







Obtaining the total gas concentration from the ideal gas law; we have the following:
where;
R= 

The steady state
molar consumption rate is:



Answer: A. A bond in which molecules share electrons