Answer: The area of the Polygon D is 36 times larger than the area of the Polygon C.
Step-by-step explanation:
<h3>
The complete exercise is: "Polygon D is a scaled copy of Polygon C using a scale factor of 6. How many times larger is the area of Polygon D than the area Polygon C"?</h3>
In order to solve this problem it is important to analize the information provided in the exercise.
You know that the Polygon D was obtained by multiplying the lengths of the Polygon C by the scale factor of 6.
Then, you can identify that the Length scale factor used is:

Now you have to find the Area scale factor.
Knowing that the Length scale factos is 6, you can say that the Area scale factor is:

Finally, evaluating, you get that this is:

Therefore, knowing the Area scale factor, you can determine that the area of the Polygon D is 36 times larger than the area of the Polygon C.
x° = 14°, y° = 14°; Use vertical and supplementary angles.
Step-by-step explanation:
The image of the answer is attached below.
In the given image two lines are parallel with transversal.
(9x + 12)° and ∠1 are vertically opposite angles.
Vertically opposite angles are equal.
∠1 = (9x + 12)°
Consecutive interior angles are supplementary.
(9x + 12)° + 3x° = 180°
⇒ 12x° = 168°
⇒ x° = 14°
Sum of the adjacent angles in a line are supplementary.
3x° + (4y – 10)° = 180°
⇒ 3(14)° + 4y° – 10° = 180°
⇒ 4y° = 148°
⇒ y° = 14°
Hence, x° = 14°, y° = 14°; Use vertical and supplementary angles.
Hours spent on project= p
4p+2=16 hours
4p=14
p=3 and a half hours
Answer:
C. opposite sides are parelell