Answer:
V₂ = 15.3
Explanation:
Given data:
Initial volume = 12.0 L
Initial temperature = 20°C
Final temperature =100°C
Final volume = ?
Solution:
First of all we will convert the temperature into kelvin.
20°C + 273 = 293 K
100°C + 273 = 373 K
Formula:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 12.0 L × 373 K / 293 k
V₂ = 4476 L.K /293 k
V₂ = 15.3
V₂ = 1566 L.K / 298 K
V₂ = 5.3 L
Answer:
Explanation:
rate of reaction
= -ve change in pressure of ethanol / time
= - (250 -237 )/100 = - 13 / 100 torr/s
= - 0.13 torr/s
next
- (237 - 224 )/100 = - 13 / 100 torr/s
= - .13 torr/s
next
- (224 - 211 )/100 = - 13 / 100 torr/s
= - .13 torr/s
so on
So rate of reaction is constant and it does not depend upon concentration or pressure of reactant .
So order of reaction is zero.
rate of reaction =K [C₂H₅OH]⁰
K is rate constant
K = .13 torr/s
In 900 s decrease in pressure
= 900 x .13 = 117
So after 900s , pressure of ethanol will be
250 - 117 = 133 torr
When battery discharge / delivering current the lead at the anode is oxidized
that is ;
pb---->pb+ 2e-
since the lead ions are in presence of aquous sulfate in insoluble lead sulfate precipitate onto the electrode
the overall reaction at the anode is therefore
Pb + SO4^2- ---> PbSO4 + 2e-