1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldier1979 [14.2K]
4 years ago
5

The vapor pressure of dichloromethane, c h 2 c l 2 , at 0 ∘ c is 134 mmhg . the normal boiling point of dichloromethane is 40. ∘

Chemistry
1 answer:
sladkih [1.3K]4 years ago
8 0
<span> the </span>vapor pressure<span> of the liquid at a temperature T</span>2<span> ... Now, </span>it's<span> important to realize that the </span>normal boiling point<span> of a substance is measured at an atmoshperic ... ΔHvap=−ln(</span>134mmHg760mmHg<span> )⋅8.314J mol−1K−1 (1(273.15+</span>0)−1(273.15+40))K−1 ... Give equations that can be used tocalculate<span> the .

Now try it yourself :)</span>
You might be interested in
A blood test shows clumps only in wells containing anti-A and anti-B antibodies. The Rhesus test was negative. Which is the corr
Svetllana [295]
I believe AB- unless I’m reading the question wrong.
8 0
3 years ago
Read 2 more answers
A mixture of 0.197 mol carbon dioxide and 0.00278 mol water vapor is held at 30.0 C and 2.50 atm. What is the partial pressure o
labwork [276]
Answer is in the picture below:

5 0
3 years ago
Help Please and answer correctly otherwise, I can report the answer and your account so make sure the answer is correct BUT PLEA
Alina [70]

Answer:

G

Explanation:

8 0
3 years ago
NEED HELP ASAP WITH THESE QUESTIONS GIVING FAIR AMOUNT OF POINTS IF HELPED WITH ALL QUESTIONS Violet light has a wavelength of 4
scoray [572]

Answer:

a) 7.14e19 Hz

b) 2.298e-27 J

c) 2.793e-19 J; 7.117e9 nm

d) 7.5e14 Hz; 4.96e-19 J

e) 6.2947e-18 J; 31.6 nm

f) 2.21e-22 J

g) 7.1e-19 J; 1.1e15 Hz

h) 3.422e-19 J; 581 nm

i) 4.2e14 Hz

j) 1.92e8 m

k) 7.14e16 Hz; Ultraviolet

Explanation:

Frequency: ν       Wavelength: λ       Energy: E       Speed of light: C (3.00e8)       Planck's Constant: h (6.626e-34)

ν -> λ    λ = C/ν

λ -> ν    ν = C/λ

For either of these equations, wavelength must be converted to meters or nanometers, depending on the equation.

For ν -> λ, after doing the equation, convert the wavelength into nanometers by dividing by 1e-9.

For converting λ -> ν, convert the wavelength into meters by multiplying by 1e-9.

For energy: E = hν = hc/λ

Now that the setup is out of the way:

a) Violet light has a wavelength of 4.20 x 10-12 m. What is the frequency?

λ -> ν    ν = C/λ

\frac{3.00e8}{4.20e-12} = 7.14e19 Hz

b) A photon has a frequency (n) of 3.468 x 106 Hz. Calculate its energy

E = hν = hc/λ

(6.626e-34) (3.468e6) = 2.298e-27 J

c) Calculate the energy (E) and wavelength (l) of a photon of light with a frequency of 4.215 x 1014 Hz.

E = hν = hc/λ

(6.626e-34) (4.215e14) = 2.793e-19 J

ν -> λ    λ = C/ν

\frac{3.00e8}{4.215e14} = 7.117 m

\frac{7.117m}{1}*\frac{1nm}{1e-9m} = 7.117e9 nm

d) Calculate the frequency and the energy of blue light that has a wavelength of 400 nm  (h = 6.62 x 10-34 J-s).

λ -> ν    ν = C/λ

\frac{400 nm}{1} *\frac{1e-9m}{1nm} = 4e-7 m

\frac{3.00e8}{4e-7} = 7.5e14 Hz

E = hν = hc/λ

(6.626e-34) (7.5e14) = 4.96e-19 J

e) Calculate the wavelength and energy of light that has a frequency of 9.5 x 1015 Hz.

ν -> λ    λ = C/ν

\frac{3.00e8}{9.5e15} = 3.16e-8 m

\frac{3.16e-8m}{1}*\frac{1nm}{1e-9m} = 31.6 nm

E = hν = hc/λ

(6.626e-34) (9.5e15) = 6.2947e-18 J

f) A photon of light has a wavelength of 0.090 cm. Calculate its energy.

E = hν = hc/λ

Convert the wavelength from cm to meters:

\frac{0.090cm}{1} *\frac{1m}{100cm} = 9e-4 m

\frac{(6.626e-34)(3.00e8)}{9e-4} = 2.21e-22 J

g) Calculate the energy and frequency of red light having a wavelength of 2.80 x 10-5 cm.

E = hν = hc/λ

Convert the wavelength from cm to meters:

\frac{2.80e-5cm}{1} *\frac{1m}{100cm} = 2.8e-7 m

\frac{(6.626e-34)(3.00e8)}{2.8e-7} = 7.1e-19 J

λ -> ν    ν = C/λ

Convert the wavelength from cm to meters:

\frac{2.80e-5cm}{1} *\frac{1m}{100cm} = 2.8e-7 m

\frac{3.00e8}{2.8e-7} = 1.1e15 Hz

h) Calculate the energy (E) and wavelength (l) of a photon of light with a frequency of 5.165 x 1014 Hz.

E = hν = hc/λ

(6.626e-34) (5.165e14) = 3.422e-19 J

ν -> λ    λ = C/ν

\frac{3.00e8}{5.165e14} = 5.81e-7 m

\frac{5.81e-7m}{1}*\frac{1nm}{1e-9m} = 581 nm

i) The wavelength of green light from a traffic signal is centered at 7.20 x 10-5 cm. Calculate the frequency.

λ -> ν    ν = C/λ

Convert the wavelength from cm to meters:

\frac{7.20e-5 cm}{1} *\frac{1m}{100cm} = 7.2e-7 m

\frac{3.00e8}{7.2e-7} = 4.2e14 Hz

j) If it takes 1.56 seconds for radio waves (which travel at the speed of light) to reach the moon from Earth, how far away is the moon?

  All we want to do here is to convert frequency (speed) to wavelength (distance). This problem requires a bit of thought, but it isn't bad once you realize that frquency is speed and wavelength is distance. It becomes just like the other problems after that. Also, I'll leave this distance in meters, but I think you can figure out how to convert it if it wants it in another unit.

  One second is equal to 1 Hertz, so our frequency is 1.56 Hz.

ν -> λ    λ = C/ν

\frac{3.00e8}{1.56} = 1.92e8 m

  The actual distance from the earth to the moon via google is 3.84e7, but sometimes problems like this will mess with the numbers to make sure that you didn't just look up the answer. I'm still pretty sure that this is right, however.

k) Calculate the frequency of light that has a wavelength of 4.20 x 10-9m. Identify the type of electromagnetic radiation.

First, we convert wavelength to frequency, as normal:

λ -> ν    ν = C/λ

\frac{3.00e8}{4.20e-9} = 7.14e16 Hz

Then we identify the electromagnetic wave type. You can look up a conversion chart for these on google, but since our frequency is in the e15 - e17 range, this light is considered ultraviolet.

5 0
4 years ago
A 6.13 g sample of an unknown salt (MM = 116.82
Olin [163]

Answer:

-3.19x10³ J

Explanation:

Since the surroundings absorbed 3.19 × 10³ J (or 3190 J) of heat, the system, or the dissolution reaction, must have lost the same amount of heat. The heat for the system, then, is -3.19 × 10³ J (or -3190 J). We know this is true because of the first law of thermodynamics, "heat is a form of energy, and thermodynamic processes are therefore subject to the principle of conservation of energy".

6 0
3 years ago
Other questions:
  • A biological process by which sugars are converted into energy and lactate
    13·1 answer
  • Wich is not a characteristic common to all minerals
    10·1 answer
  • Determine the rate of a reaction that follows the rate law rate = k a m b i where
    13·1 answer
  • Hello<br>Thank you for not answering my question
    5·1 answer
  • How do you balance Fe2O3+CO=Fe+CO2
    8·1 answer
  • One reason ionic compounds do not dissolve well in nonpolar solvents is that
    11·1 answer
  • Explain why non ionic compounds are soluble in water ?
    6·1 answer
  • Nitric acid is a key industrial chemical, largely used to make fertilizers and explosives. The first step in its synthesis is th
    15·1 answer
  • Which two organ systems work together to provide cells with oxygen and to remove carbon
    5·1 answer
  • Calcium reacts with oxygen to form calcium oxide. Name the<br> reactants.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!