To get moles. divide mass by molar mass.Molar mass of
Na is 23
and for Cl is 35.5.
the total molar mass of NaCl is 23+35.5 = 58.5mol/gUse the mass and divide by this number30.22g divide by 58.5mol/g and you will get 0.5166 mole.
Since the molecule has 1 Na to 1 Cl, and that the number of moles for NaCL is 0.5166. All of them would be 0.5166molesNa = 0.5166 x 1 = 0.5166molesCl = 0.5166 x 1 = 0.5166moles
to get number of atoms. Multiply your mole by Avogadro number which is 6.022x10^23Na = 0.5166 x 6.022E23 = 3.111x10^23Cl = 0.5166 x 6.022E23 = 3.111x10^23
Answer:
2.765amu is the contribution of the X-19 isotope to the weighted average
Explanation:
The average molar mass is defined as the sum of the molar mass of each isotope times its abundance. For the unknown element X that has 2 isotopes the weighted average is defined as:
X = Mass X-19 * Abundance X-19 + MassX-21 * Abundance X-21
The contribution of the X-19 isotope is its mass (19.00 amu) times its abundance (14.55% = 0.1455). That is:
19.00amu * 0.1455 =
2.765amu is the contribution of the X-19 isotope to the weighted average
I would say C is the most correct.
In D it depends on what water source you're using. Let's say it is a waterfall, then the source of the water (melting ice or a lake) may disappear in the future.
If you're using underwater "windmills" placed in the ocean, then you would expect it to last a while as the ocean will not disappear in the near future.
Answer:What should you do if you realize during research that your original theory is wrong
Explanation: