Answer:
Solution given;
<ABD=<BAC+<ACB
<u>Since</u><u> </u><u>exterior</u><u> </u><u>angle</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>triangle</u><u> </u><u>is</u><u> </u><u>equal</u><u> </u><u>to</u><u> </u><u>the</u><u> </u><u>sum</u><u> </u><u>of</u><u> </u><u>two</u><u> </u><u>opposite</u><u> </u><u>interior</u><u> </u><u>angle</u>
26x+20=19x-15+9x+25
solve like terms
26x+20=28x+10
subtracting both by 10
26x+20-10=28x+10-10
Subtracting both side by 26x
10=28x-26x
2x=10
dividing both side by 2
2x/2=10/2
x=5
Now
<ABD=26*5+20=l50°
<u>T</u><u>h</u><u>e</u><u> </u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u> </u><u>o</u><u>f</u><u> </u><u><</u><u>A</u><u>B</u><u>D</u><u> </u><u>i</u><u>s</u><u> </u><u>1</u><u>5</u><u>0</u><u>°</u>
You have to multiple 3 times somithing then you just sudtart that to get 18
<span>The sum of the square of a number and 34 = </span>x^2 + 34
hope it helps
Answer:
y = 4x - 30
Step-by-step explanation:
The general slope-intercept equation for a straight line is
y = mx + b
For y = 4x – 3, m = 4
=====
The other equation passes through (8,2) and has slope 4:
y = 4x +b Set x = 8, y = 2.
2 = 4×8 + b
2 = 32 + b Subtract 32 from each side
b= -30
The equation for the second graph is
y = 4x – 30
The graph below shows Equation (1) as a red line.
The graph of Equation 2 is the green line that passes through (8,2), runs parallel to Equation (1), and has a y-intercept at (0,-30.