1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fantom [35]
3 years ago
6

12.51 A parallel RLC circuit, which is driven by a variable frequency 2-A current source, has the following values: R = 1 kΩ, L

= 400 mH, and C = 10 μF. Find the bandwidth of the network, the half-power frequencies, and the voltage across the network at the half-power frequencies.
Physics
1 answer:
Anastaziya [24]3 years ago
6 0

Answer:

BW = 100 rad/s

wlow = 452.49 rad/s

whigh = 552.49 rad/s

V(jwlow) =1414.21 < 45°V

V(jwhigh) =1414.21 <-45°V

Explanation:

To calculate bandwidth we have formula

BW = 1/RC

BW = 1/ 1000x10x10^¯6

BW = 100 rad/s

We will first calculate resonant frequency and quality factor for half power frequencies.

For resonant frequency

wo = 1/(SQRT LC)

wo = 1/SQRT 400×10¯³ × 10×10^¯6

wo = 500 rad/s

For Quality

Q = wo / BW

Q = 500/100

Q = 5

wlow = wo [-1/2Q+ SQRT (1/2Q)² + 1]

wlow = 500 [-1/2×5 + SQRT (1/2×5)² + 1]

wlow = 452.49 rad/s

whigh = wo [1/2Q+ SQRT (1/2Q)² + 1]

whigh = 500 [1/2×5 + SQRT (1/2×5)² + 1]

whigh = 552.49 rad/s

We will start with admittance at lower half power frequency

Y(jwlow) = (1/R) + (1/jwlow L) + (jwlow C)

Y(jwlow) = (1/1000) + (1/j×452.49×400×10¯³) + (j×452.49×10×10^¯6)

Y(jwlow) = 0.001 - j5.525×10¯³ + j4.525×10¯³

Y(jwlow) = (1-j).10¯³ S

Voltage across the network is calculated by ohm's law

V(jwlow) = I/Y(jwlow)

V(jwlow) = 2/(1-j).10¯³

V(jwlow) = 1414.2 < 45°V

Now we will calculate the admittance at higher half power frequency

Y(jwhigh) = (1/R) + (1/jwhigh L) + (jwhigh C)

Y(jwhigh) = (1/1000) + (1/j×552.49×400×10¯³) + (j×552.49×10×10^¯6)

Y(jwhigh) = 0.001 - j4.525×10¯³ + j5.525×10¯³

Y(jwhigh) = (1+j).10¯³ S

Voltage across network will be calculated by ohm's law

V(jwhigh) = I/Y(jwhigh)

V(jwhigh) = 2/(1+j).10¯³

V(jwhigh) = 1414.2 < - 45°V

You might be interested in
A bowling ball traveling with constant speed hits the pins at the end of a bowling lane 16.5 m long. The bowler hears the sound
Strike441 [17]

Answer:

5.997m/s

Explanation:

We were told to calculate the speed of the ball,

Given speed of sound as 340 m

And we know that the sound of the ball hitting the pins is at 2.80 s after the ball is released from his hands.

Speed of ball = distance traveled/(time of hearing - time the sound travels).

Speed= S/t

Where S= distance traveled

t= time of hearing - time the sound travels

time=time for ball to roll+timefor sound to come back.

time of sound=16.5/340

=0.048529secs

solving for speedof ball

Then,Speed of ball = distance traveled/(time of hearing - time the sound travels).

=16.5/(2.80-0.048529) m/s = 5.997m/s

Therefore, the speed of the ball is

5.997m/s

4 0
3 years ago
A 10-cm-long spring is attached to theceiling. When a 2.0 kg mass is hung from it,the spring stretches to a length of 15 cm.a.Wh
alekssr [168]

(a) 392 N/m

Hook's law states that:

F=k\Delta x (1)

where

F is the force exerted on the spring

k is the spring constant

\Delta x is the stretching/compression of the spring

In this problem:

- The force exerted on the spring is equal to the weight of the block attached to the spring:

F=mg=(2.0 kg)(9.8 m/s^2)=19.6 N

- The stretching of the spring is

\Delta x=15 cm-10 cm=5 cm=0.05 m

Solving eq.(1) for k, we find the spring constant:

k=\frac{F}{\Delta x}=\frac{19.6 N}{0.05 m}=392 N/m

(b) 17.5 cm

If a block of m = 3.0 kg is attached to the spring, the new force applied is

F=mg=(3.0 kg)(9.8 m/s^2)=29.4 N

And so, the stretch of the spring is

\Delta x=\frac{F}{k}=\frac{29.4 N}{392 N/m}=0.075 m=7.5 cm

And since the initial lenght of the spring is

x_0 = 10 cm

The final length will be

x_f = x_0 +\Delta x=10 cm+7.5 cm=17.5 cm

8 0
3 years ago
Read 2 more answers
WHAT FEATURE DO ALL VOLCANOES SHARE? PLEASE LIST AT LEAST 3!!!
snow_tiger [21]
Rocky,hot,magma,underground and much more
7 0
3 years ago
Read 2 more answers
When I bump the table, the coffee in my cup spilled out. Newton's _____ law explains this reaction.
Ivan
When I bump the table, the coffee in my cup spilled out. Newton's 1st law explains this reaction.

Answer: A) or the first option.
7 0
3 years ago
Read 2 more answers
What is the velocity of a wave with a frequency of 760Hz and a wavelength of 0.45m?
elena-14-01-66 [18.8K]
Do you not understand how to solve for the answer?
5 0
3 years ago
Other questions:
  • Which line on the graph represents the radioactive decay of an isotope?
    14·1 answer
  • The process of generating an electric current by moving an electrical conductor through a magnetic field is called
    13·1 answer
  • Which of the following has the highest viscosity? A. corn syrup B. milk C. water D. orange juice
    15·1 answer
  • In an elastic collision, the momentum is _____, and the mechanical energy is _____.
    10·1 answer
  • Railroad cars are loosely coupled so that there is a noticeable time delay from the time the first and last car is moved from re
    6·1 answer
  • 5.<br> When your brakes fail, you should<br> The answer is B
    12·1 answer
  • Small pockets of synovial fluid that reduce friction and act as a shock absorber where ligaments and tendons rub against other t
    15·1 answer
  • While standing at the edge of the roof of a building, a man throws a stone upward with an initial speed of 7.07 m/s. The stone s
    14·1 answer
  • How can you return a negatively or positively charged object back to its neutral state?
    7·1 answer
  • Which benefit outweighs the risks in the technological design of headphones?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!