Answer:
Yes.
Explanation:
Newton's first law says that an object in motion stays in motion and an object at rest stays at rest until acted upon by an unbalanced force.
If an object in motion has balanced forces, it will stay in motion. For example, if an object is falling at terminal velocity (for example, a parachuter), then the force of gravity is equal and opposite to the force of air resistance. The forces are balanced, and the object continues to fall at a constant speed.
My guess for this one would be; 400 N
My reasoning would be; it starts at 0 on both X and Y, if you need to get to 1.00 meters thats 4/4. 1/4 of 1.00 is .25, and on .25 its on 100 so multiply it by 4 to make 1.00 and you get 400 N
Answer:
t = 0.67 [s]
Explanation:
To solve this problem we must use the following kinematics equation.

Vf = final velocity = 20[m/s]
Vi = initial velocity = 10 [m/s]
a = aceleration = 15 [m/s^2]
Now replacing in the equation we have:
20 = 10 + (15*t)
t = (20-10)/15
t = 0.67 [s]