When a river flows into an ocean, it slows down and deposits materials in its delta
Answer:
doubled the initial value
Explanation:
Let the area of plates be A and the separation between them is d.
Let V be the potential difference of the battery.
The energy stored in the capacitor is given by
U = Q^2/2C ...(1)
Now the battery is disconnected, it means the charge is constant.
the separation between the plates is doubled.
The capacitance of the parallel plate capacitor is inversely proportional to the distance between the plates.
C' = C/2
the new energy stored
U' = Q^2 / 2C'
U' = Q^2/C = 2 U
The energy stored in the capacitor is doubled the initial amount.
Answer:
C) Unscrew one light. If the other lights turn off, it's a series circuit.
Explanation:
THIS IS THE COMPLETE QUESTION BELOW;
A strand of 10 lights is plugged into an outlet. How can you determine if the lights are connected in series or parallel? A) Unscrew one light. If the other lights stay on, it's a series circuit. B) Unplug the strand. If the first light stays on, it's a series circuit. C) Unscrew one light. If the other lights turn off, it's a series circuit. D) Cut the strand in half. If the plugged in half stays on, it's a series circuit.
SERIES CIRCUIT
In this circuit, the components there are in the same path, the entire circuit has the same current, each of the components posses different voltage drop. Hence, failure of one components to work, there will be break in entire circuit then other components cease to work.
PARALLEL CIRCUIT
This circuit has equal voltage drop across all the components, any problem in a component will not has effect on other components.
Therefore, if one want to determine if a light connection is in series or in parallel, one of the light can be unplugged if others stop working it means it's series, if other works it's parallel.
Answer:
1/8 x C
Explanation:
The capacitance of parallel plate capacitor
= ε₀ A /d where A is area of plate and d is distance between plate.
for capacitor 1
C = ε₀ A /d
For capacitor 2
radius = R/2
Area = A / 4
Capacitance
= ε₀ (A/4) x ( 1 / 2d )
= ( 1 / 8) x (ε₀ A /d)
= 1/8 x C
The SI unit of measure for work, as well as
for all other kinds of energy, is the "joule".