Answer:
11109.825 N
Explanation:
Given Data:
total mass =m=1510 kg
initial acceleration (a) =0.75g ( g=9.81 m/s² )
F=ma
= (1510)*( 0.75*9.81)
= 11109.825 N
Answer:
a. 21.68 rad/s b. 30.78 m/s c. 897 rev/min² d. 1085 revolutions
Explanation:
a. Its angular speed in radians per second ω = angular speed in rev/min × 2π/60 = 207 rev/min × 2π/60 = 21.68 rad/s
b. The linear speed of a point on the flywheel is gotten from v = rω where r = radius of flywheel = 1.42 m
So, v = rω = 1.42 m × 21.68 rad/s = 30.78 m/s
c. Using α = (ω₁ - ω)/t where α = angular acceleration of flywheel, ω = initial angular speed of wheel in rev/min = 21.68 rad/s = 207 rev/min, ω₁ = final angular speed of wheel in rev/min = 1410 rev/min = 147.65 rad/s, t = time in minutes = 80.5/60 min = 1.342 min
α = (ω₁ - ω)/t
= (1410 - 207)/(80.5/60)
= 60(1410 - 207)/80.5
= 60(1203)80.5
= 896.65 rev/min² ≅ 897 rev/min²
d. Using θ = ωt + 1/2αt²
where θ = number of revolutions of flywheel. Substituting the values of the variables from above, ω = 207 rev/min, α = 896.65 rev/min² and t = 80.5/60 min = 1.342 min
θ = ωt + 1/2αt²
= 207 × 1.342 + 1/2 × 896.65 × 1.342²
= 277.725 + 807.417
= 1085.14 revolutions ≅ 1085 revolutions
By definition we know that Force is equal to mass by acceleration F = m * a. Also, by definition acceleration equals velocity between time a = v / t. Therefore, the expression for the force will be given by: F = m * (v / t). Substituting the values: F = 17 * (6/3) = 34N. The force is 34N
Answer:
b) field is zero, c) the magnetic field does not change in intensity or direction
e) M = -H = Bo /μ₀
, g) M = 0
Explanation:
Part b
superconductors are formed by so-called Coper pairs that are electrons linked through a distortion in the network, this creates that they must be treated as an entity so we have an even number of charge carriers and the material must behave with diamagnetic , Meissner effect, consequently the magnetic field inside its superconductor is zero
the correct answer is Zero
Part c
outside the superconducting cylinder the magnetic field does not change in intensity or direction
Part E
Magnetization is defined by the equation
B = μ₀ (H + M)
with field B it is zero inside the superconductors
M = -H = Bo /μ₀
where Bo is the magnetic induction in the normal state
Part g
As outside the cylinder there is no material zero magnetization
M = 0