H(t) = −16t^2 + 75t + 25
g(t) = 5 + 5.2t
A)
At 2, h(t) = 111, g(t) = 15.4
At 3, h(t) = 106, g(t) = 20.6
At 4, h(t) = 69, g(t) = 25.8
At 5, h(t) = 0, g(t) = 31
The heights of both functions would have been the closest value to each other after 4 seconds, but before 5 seconds. This is when g(x) is near 30 (26-31), and the only interval that h(t) could be near 30 is between 4 and 5 seconds (as it is decreasing from 69-0).
B) The solution to the two functions is between 4 and 5 seconds, as that is when their height is the same for both g(t) and h(t). Actually the height is at 4.63 seconds, their heights are both
What this actually means is that this time and height is when the balls could collide; or they would have hit each other, given the same 3-dimensional (z-axis) coordinate in reality.
Answer:
Mikhail's age is 25 years old
Step-by-step explanation:
Let's make an equation: Say Mikhail is x, so Gabby would be 2*x=2x
If the sum of their ages equals 75, then x+2x=75, and x=2x=3x, so 3x=75.
75/3=25
The composite function combines the palm tree and the seed functions
The composite function is t(d) = 60d + 20
<h3>How to determine the composite functions</h3>
The functions are given as:
Number of palm trees: t(s) = 3s + 20
Number of seeds: s(d) = 20d
The composite function that represents the number of palm trees Carlos can expect to grow over a certain number of days is represented as:
t(s(d))
This is calculated as:
t(s(d)) = 3s(d) + 20
Substitute s(d) = 20d
t(s(d)) = 3 * 20d + 20
Evaluate the product
t(s(d)) = 60d + 20
Rewrite as:
t(d) = 60d + 20
Hence, the composite function is t(d) = 60d + 20
Read more about composite functions at:
brainly.com/question/10687170
Answer:
3/10
Step-by-step explanation:
3/5 se puede convertir en 6/10
(3x2)/(5x2).
9/10 - 6/10 = 3/10
le falta 3/10 para llegar a 9/10.
The equation of the parabolas given will be found as follows:
a] general form of the parabolas is:
y=k(ax^2+bx+c)
taking to points form the first graph say (2,-2) (3,2), thus
y=k(x-2)(x-3)
y=k(x^2-5x+6)
taking another point (-1,5)
5=k((-1)^2-5(-1)+6)
5=k(1+5+6)
5=12k
k=5/12
thus the equation will be:
y=5/12(x^2-5x+6)
b] Using the vertex form of the quadratic equations:
y=a(x-h)^2+k
where (h,k) is the vertex
from the graph, the vertex is hence: (-2,1)
thus the equation will be:
y=a(x+2)^2+1
taking the point say (0,3) and solving for a
3=a(0+2)^2+1
3=4a+1
a=1/2
hence the equation will be:
y=1/2(x+2)^2+1