Answer:
Type I error occurs when the null hypothesis, H0, is rejected, although it is true.
Here the null hypothesis, H0 is:
H0: Setting weekly scheduled online interactions will boost the well being of people who are living on their own during the stay at home order.
a) A Type I error would be committed if the researchers conclude that setting weekly scheduled online interactions will not boost the well being of people who are living on their own during the stay at home order, but in reality it will
b) Two factors affecting type I error:
1) When the sample size, n, is too large it increases the chances of a type I error. Thus, a sample size should be small to decrease type I error.
2)A smaller level of significance should be used to decrease type I error. When a larger level of significance is used it increases type I error.
Question: What value of c will complete the square below (
) and make the expression a perfect square trinomial?
Answer: c = 225
Step-by-step explanation:
Perfect square trinomials come in the form a² + 2ab + b², which is equal to (a + b)². In the presented trinomial, we can immediately identify that <u>a = x, and b² = c</u>, but we need to find the numerical value of
.
To do this, note that the middle term, or <u>2ab, corresponds with (is equal to) 30x</u>. We know that a = x, and thus, <u>2ab = 2bx</u>. Now, 2bx and 30x are corresponding terms; thus, <u>2bx = 30x</u>.
Dividing by
on both sides gives us <u>b = 15</u>. Therefore, c = b² = 15² = 225. (As a squared binomial, this would be (x + 15)² as a = x and b = 15.)
If you subtract 617 and 385 it will give you the answer which is 232 the plane did 232 in the morning than in the afternoon
Hope it helps :)
Answer:
The correct way to set up the slope formula for the line that passes through points (5 , 0) and (6 , -6) is
⇒ C
Step-by-step explanation:
The formula of the slope of a line passes through points
and 
is 
∵ The line passes through points (5 , 0) and (6 , -6)
∴
= 5 and
= 6
∴
= 0 and
= -6
Substitute these values in the formula of the slope
∵ 
∴ 
Let us look to the answer and find the same formula
The answer is:
The correct way to set up the slope formula for the line that passes through points (5 , 0) and (6 , -6) is 