<u>Given</u>:
Given that ABC is a right triangle.
The length of AB is 7 units.
The measure of ∠A is 65°
We need to determine the length of AC
<u>Length of AC:</u>
The length of AC can be determined using the trigonometric ratio.
Thus, we have;

Where the value of
is 65° and the side adjacent to the angle is AC and the side hypotenuse to the angle is AB.
Substituting the values, we have;

Substituting AB = 7, we have;

Multiplying both sides by 7, we get;



Rounding off to the nearest hundredth, we get;

Thus, the length of AC is 2.96 units.
(x^2 + 3)(5x + 9)
5x^3 + 9x^2 + 15x + 27
Answer:
It should be a rhombus :)
Answer: You need to wait at least 6.4 hours to eat the ribs.
t ≥ 6.4 hours.
Step-by-step explanation:
The initial temperature is 40°F, and it increases by 25% each hour.
This means that during hour 0 the temperature is 40° F
after the first hour, at h = 1h we have an increase of 25%, this means that the new temperature is:
T = 40° F + 0.25*40° F = 1.25*40° F
after another hour we have another increase of 25%, the temperature now is:
T = (1.25*40° F) + 0.25*(1.25*40° F) = (40° F)*(1.25)^2
Now, we can model the temperature at the hour h as:
T(h) = (40°f)*1.25^h
now we want to find the number of hours needed to get the temperature equal to 165°F. which is the minimum temperature that the ribs need to reach in order to be safe to eaten.
So we have:
(40°f)*1.25^h = 165° F
1.25^h = 165/40 = 4.125
h = ln(4.125)/ln(1.25) = 6.4 hours.
then the inequality is:
t ≥ 6.4 hours.