Answer:

Step-by-step explanation:
Given the quadratic function

we have to find the leading coefficient of given quadratic equation.

The coefficient of
i.e a is known as the leading coefficient.
Comparing given equation with the standard equation, we get
a=-2

Answer:
$162000
Step-by-step explanation:
8% of 10000
10000÷100=100×8=800
10000+800=10800
10800×15=162000
The marginal distribution for gender tells you the probability that a randomly selected person taken from this sample is either male or female, regardless of their blood type.
In this case, we have total sample size of 714 people. Of these, 379 are male and 335 are female. Then the marginal probability mass function would be
![\mathrm{Pr}[G = g] = \begin{cases} \dfrac{379}{714} \approx 0.5308 & \text{if }g = \text{male} \\\\ \dfrac{335}{714} \approx 0.4692 & \text{if } g = \text{female} \\\\ 0 & \text{otherwise} \end{cases}](https://tex.z-dn.net/?f=%5Cmathrm%7BPr%7D%5BG%20%3D%20g%5D%20%3D%20%5Cbegin%7Bcases%7D%20%5Cdfrac%7B379%7D%7B714%7D%20%5Capprox%200.5308%20%26%20%5Ctext%7Bif%20%7Dg%20%3D%20%5Ctext%7Bmale%7D%20%5C%5C%5C%5C%20%5Cdfrac%7B335%7D%7B714%7D%20%5Capprox%200.4692%20%26%20%5Ctext%7Bif%20%7D%20g%20%3D%20%5Ctext%7Bfemale%7D%20%5C%5C%5C%5C%200%20%26%20%5Ctext%7Botherwise%7D%20%5Cend%7Bcases%7D)
where G is a random variable taking on one of two values (male or female).
You would save $2.25 hope this helps
$8.00 is how much you will save