1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inga [223]
2 years ago
6

If you do these 2 problems you get 100 points

Mathematics
2 answers:
Amiraneli [1.4K]2 years ago
6 0

#1

  • x-4y≤-12
  • -4y≤-x-12
  • 4y≥x+12
  • y≥1/4x+3

Put (0,0)

  • 0≥0+3 is false

Shading will be away from origin.

y inetercept

  • y=3(when x=0)

Check the direction of line by taking 4 and -4

  • y=4/4+3=y=4
  • y=-4/4+3=-1+3=2

The graph should bend down on left side while rise up in right side

Option A

#2

  • 5x-4y>4
  • -4y>-5x+4
  • 4y<5x-4
  • y<5/4x-1

Putting origin in it

  • 0>-1

Shading away from origin

And

  • x+y<2
  • y<2-x

Putting origin

  • 0<2

Shading towards origin

  • Option B as shading should be downwards here
frosja888 [35]2 years ago
4 0

Answer:

BELOW

Step-by-step explanation:

DO I HEAR 100 POINTS? Yes.

For the first image, that answer is A.

For the second image, I'm a bit confused on which problems you want me to do, so I'll do number 10, 11, and 14.

10) Yeah, you're correct, it is J.

11) (1,-6), (-2,-5), (8,2) (4,0) and I can't see the last point so..

14)  Can't see the question :(

You might be interested in
Jackson drinks 0.44 liters of water, which was 55% of the water in the bottle. How much water was in the bottle to start?
Delicious77 [7]

Answer:

He had 0.8 liters to start with...

Step-by-step explanation:

0.44 is 55% of what? (what = x)

Equation: Y = P% * X

X = Y/P%

X = 0.44/55%

55% = 0.55

X = 0.44/0.55

X = 0.8

7 0
3 years ago
Read 2 more answers
The area of a parallelogram with a side of 5.6 in is equal to the area of a rectangle with sides 7 in and 8 in. Find the altitud
Tpy6a [65]
The answer of that question is 28 ; )
6 0
3 years ago
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\&#10;(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\&#10;(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\&#10;S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=&#10;\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\&#10;

=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}&#10;\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\&#10;S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\&#10;S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=&#10;\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\&#10;\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
I need some help with my math test today!
vladimir1956 [14]

Answer:

1.end point continues in one direction

2. point were two line segemnt, lines, rays meet

3. measures 90 degrees

4. greater than 90 degrees

5. measures 180 degrees

6. position in space

7. flat surface

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
VERY EASY, WILL GIVE 50 POINTS FOR CORRECT ANSWER ASAP AND WILL GIVE BRAINLIEST.
Mashutka [201]

Answer:

(80, 120)

Step-by-step explanation:

y - 40 + y = 200

2y = 240

y = 120

x = 120 - 40

x = 80

Hope it helped

7 0
3 years ago
Other questions:
  • Nate's classroom has three tables of different lengths. One has a length of 4 1/2 feet, another has a length of 4 feet, and a th
    15·2 answers
  • Need help on this the struggle is real!!!
    10·1 answer
  • Help me please just please please please I'm begging you
    9·1 answer
  • 3(-6+8)=(3x-6)+(3x8)
    10·2 answers
  • Ms. Jackson is driving from south bend to Indianapolis. She measures a distance of 4.3 cm between the cities on her Indiana road
    7·2 answers
  • What is the solution to the inequality 12&lt;8+x
    8·1 answer
  • WILL MARK BRAINLIEST!!! A contractor has 34 meters of fencing that he is going to use as the perimeter of a rectangular garden.
    7·1 answer
  • Sam and Annika ride their bikes to school. Sam rides his bike (k) kilometers . Annika rides her bike 2 less than 4 times as many
    7·1 answer
  • What is The area of this trapezoid?
    15·1 answer
  • Have to make the equation on the left look like the equation on the right. There are apparently only 2 steps but I can not figur
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!