So for me, how I would do it is move the variables and numbers to one side. So we have the equation 3x-3=2/5x+7. So you would subtract 2/5x to the left side and add 3 to the right side. The equation will then turn out to be 3x-2/5x=7+3. Much more easier right? So just simplify both side, and you will get 13/5x=10. In order to isolate x, you have to divide 13/5 in both side, leaving x= 3 11/13 or 50/13. You can always plug the answer back in to double check :)
The answer is B because if you follow it starting from it AAS
Answer:
point form: (1,-2)
Equation Form: x = 1, y = -2
Step-by-step explanation:

- Given - <u>two </u><u>points </u><u>P </u><u>(</u><u> </u><u>5</u><u> </u><u>,</u><u> </u><u>1</u><u>0</u><u> </u><u>)</u><u> </u><u>and </u><u>R </u><u>(</u><u> </u><u>1</u><u>2</u><u> </u><u>,</u><u> </u><u>1</u><u>4</u><u> </u><u>)</u><u> </u><u>on </u><u>the </u><u>c</u><u>artesian </u><u>plane</u>
- To find - <u>distance </u><u>between </u><u>the </u><u>two </u><u>points</u>
<u>Using </u><u>the </u><u>distance </u><u>formula</u> ~

we have ,

<u>substituting</u><u> </u><u>the </u><u>values </u><u>in </u><u>the </u><u>formula </u><u>,</u><u> </u><u>we </u><u>get</u>

hope helpful :)