<h2>
Answer with explanation:</h2>
It is given that:
f: R → R is a continuous function such that:
∀ x,y ∈ R
Now, let us assume f(1)=k
Also,
( Since,
f(0)=f(0+0)
i.e.
f(0)=f(0)+f(0)
By using property (1)
Also,
f(0)=2f(0)
i.e.
2f(0)-f(0)=0
i.e.
f(0)=0 )
Also,
i.e.
f(2)=f(1)+f(1) ( By using property (1) )
i.e.
f(2)=2f(1)
i.e.
f(2)=2k
f(m)=f(1+1+1+...+1)
i.e.
f(m)=f(1)+f(1)+f(1)+.......+f(1) (m times)
i.e.
f(m)=mf(1)
i.e.
f(m)=mk
Now,

Also,
i.e. 
Then,

(
Now, as we know that:
Q is dense in R.
so Э x∈ Q' such that Э a seq
belonging to Q such that:
)
Now, we know that: Q'=R
This means that:
Э α ∈ R
such that Э sequence
such that:

and


( since
belongs to Q )
Let f is continuous at x=α
This means that:

This means that:

This means that:
f(x)=kx for every x∈ R
Answer:
The answer is 12.4
Step-by-step explanation:
Because it is this way.
Answer:
24 dollars per liter
Step-by-step explanation:
Take the number of dollars and divide by the number of liters
60 dollars / 2.5 liters
24 dollars per liter
Answer:
C Population
Step-by-step explanation:
Population
The above case is an example of population survey. Here a set of 56 surveys have been performed with set of 56 students. The survey is conducted on a large scale. In statistics a population is set of similar items or events which is of the interest for some event or experiment. Since, the above experiment fits the definition of the Population, it is example of population survey.