Answer:
4 days
Step-by-step explanation:
6 divided by 3= 2 liters per day
2,4,6,8
I hope it is right
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Coordinates (x, y)
- Functions
- Function Notation
- Terms/Coefficients
- Exponential Rule [Rewrite]:

<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
<u>Step 1: Define</u>
<u />
<u />

<u>Step 2: Differentiate</u>
- [Function] Rewrite [Exponential Rule - Rewrite]:

- Basic Power Rule:

- Simplify:

- Rewrite [Exponential Rule - Rewrite]:

<u>Step 3: Solve</u>
- Substitute in coordinate [Derivative]:

- Evaluate exponents:

- Divide:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e
Answer:
(-1/3, 3/4)
Step-by-step explanation:
9x + 8y = 3
6x - 12y = -11
Let's solve the system by eliminating x. We need the coefficients of x to be additive inverses, so they will add to zero eliminating x. The LCM of 9 and 6 is 18. Let's multiply both sides of the first by 2 and both sides of the second equation by -3.
18x + 16y = 6
-18x + 36y = 33
The coefficients of x are 18 and -18, which add to zero. Now we add these two equations.
52y = 39
y = 39/52
y = 3/4
Now we substitute y with 3/4 in the first equation and solve for x.
9x + 8y = 3
9x + 8(3/4) = 3
9x + 6 = 3
9x = -3
x = -3/9
x = -1/3
Solution: (-1/3, 3/4)
Answer:
Our juices’ journey to your table starts on the thousands of acres of citrus farms dotting Western North America. The process begins when the fruit is harvested at its sweetest, then sent to our plant to be pressed and bottled. From the plant, our juice is sent to retailers throughout the West, including Ralph’s, Bristol Farms and Pavilions to name a few. This lateral integration gets the freshest, best tasting juices to our customers as quickly as possible, and makes Perricone Farms a true “Farm-Bottle-Table” company. You’ll taste the difference with every sip.