Hi, you've asked an unclear question. However, I inferred you may want to know the actual number of students represented by the percentages of 27%, and 61%.
<u>Explanation:</u>
Finding percentage usually involves performing two operations; multiplication and division.
First, all (100%) of respondents said they watched TV at least at some point during the day.
Next, 27% of respondents stated that they only watched television during prime time hours, in which the actual number of students represented by the percentage is calculated by dividing 27 by 100 and multiplying by 1000 =
.
Finally, we are told 61% of respondents stated that they spend prime time hours in their dorm rooms. The actual number of students represented by the percentage is calculated by dividing 61 by 100 and multiplying by 1000 =

Answer:
0.0803 = 8.03% probability that the number who have a high school degree as their highest educational level is exactly 32.
Step-by-step explanation:
For each adult, there are only two possible outcomes. Either they have a high school degree as their highest educational level, or they do not. The probability of an adult having it is independent of any other adult. This means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
30.4% of U.S. adults 25 years old or older have a high school degree as their highest educational level.
This means that 
100 such adults
This means that 
Determine the probability that the number who have a high school degree as their highest educational level is a. Exactly 32
This is P(X = 32).


0.0803 = 8.03% probability that the number who have a high school degree as their highest educational level is exactly 32.
Answer:
$144.70
Step-by-step explanation:
Calculation to determine how much greater will the amount of interest capitalized be than the minimum amount that she could pay to prevent interest capitalization
First step is to determine the Interest only monthly repayments
Using this formula
I=Prt
where,
P=$6925
r=0.05/1
t=1
Let plug in the formula
I=6925*0.05/12
I= $28.854166666
Second step is to determine the amount she will owe after 4 years
Using this formula
S=P(1+r)n
Let plug in the formula
S=6925*(1+0.05/12)4*12
S=6925*(1+0.05/12)48
S=$8454.70
Third step is to determine the Interest part
Interest =8454.70 - 6925
Interest = $1529.70
Now let determine the how much greater will the amount of interest capitalized be
Interest capitalized=1529.70 - 1385.00
Interest capitalized =$144.70
Therefore how much greater will the amount of interest capitalized be than the minimum amount that she could pay to prevent interest capitalization is $144.70
A = -6
b = 48
Hope this helps :)