$69.24 is the correct answer because 56.75 multiplied by 1.22 is 69.24
Multiply by 3 so the answer is three
Complete question is;
Multiple-choice questions each have 5 possible answers, one of which is correct. Assume that you guess the answers to 5 such questions.
Use the multiplication rule to find the probability that the first four guesses are wrong and the fifth is correct. That is, find P(WWWWC), where C denotes a correct answer and W denotes a wrong answer.
P(WWWWC) =
Answer:
P(WWWWC) = 0.0819
Step-by-step explanation:
We are told that each question has 5 possible answers and only 1 is correct. Thus, the probability of getting the right answer in any question is =
(number of correct choices)/(total number of choices) = 1/5
Meanwhile,since only 1 of the possible answers is correct, then there will be 4 incorrect answers. Thus, the probability of choosing the wrong answer would be;
(number of incorrect choices)/(total number of choices) = 4/5
Now, we want to find the probability of getting the 1st 4 guesses wrong and the 5th one correct. To do this we will simply multiply the probabilities of each individual event by each other.
Thus;
P(WWWWC) = (4/5) × (4/5) × (4/5) × (4/5) × (1/5) = 256/3125 ≈ 0.0819
P(WWWWC) = 0.0819
Answer:
The answer is cosx cot²x ⇒ the first answer
Step-by-step explanation:
∵ cot²x = cos²x/sin²x
∵ secx = 1/cosx
∴ cot²x secx - cosx = (cos²x/sin²x)(1/cosx) - cosx
= (cosx/sin²x) - cosx
Take cosx as a common factor
∴ cosx[(1/sin²x) - 1] ⇒ use L.C.M
∴ cosx[1-sin²x/sin²x]
∵ 1 - sin²x = cos²x
∴ cosx(cos²x/sin²x) = cosx cot²x
A
evaluate f(5) and f(2)
f(5) = 5m + b and f(2) = 2m + b, hence
f(5) - f(2) = 5m + b - 2m - b = 3m
the expression simplifies to
= 2 ( cross- multiply )
3m = 6 ( divide both sides by 3 )
m = 2 → A