Answer:
The approximated length of the cables that stretch between the tops of the two towers is 1245.25 meters.
Step-by-step explanation:
The equation of the parabola is:

Compute the first order derivative of <em>y</em> as follows:

![\frac{\text{d}y}{\text{dx}}=\frac{\text{d}}{\text{dx}}[0.00035x^{2}]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7Bd%7Dy%7D%7B%5Ctext%7Bdx%7D%7D%3D%5Cfrac%7B%5Ctext%7Bd%7D%7D%7B%5Ctext%7Bdx%7D%7D%5B0.00035x%5E%7B2%7D%5D)

Now, it is provided that |<em>x </em>| ≤ 605.
⇒ -605 ≤ <em>x</em> ≤ 605
Compute the arc length as follows:


Now, let



Plug in the solved integrals in Arc Length and solve as follows:


Thus, the approximated length of the cables that stretch between the tops of the two towers is 1245.25 meters.
In rotation, the angle through which the plane figure is rotated is called the point of a figure through a specified angle and direction about a fixed point. Identify the corresponding vertices of the rotation.
Answer:
25.1 ft
Step-by-step explanation:
To solve for circumference is pretty simple. Just use the equation 2pi r (r=radius, radius is diameter divided by 2).
So essentially, apply to your calculator:
2(3.14)4=25.12
pretty simple! hope this helps!
Ok i will help you in this subject