Here's how I would do it:
How far does he have to go to catch the bug ? <u>23.8 meters</u>
How soon does he want to get there ? <u>1.8 seconds</u>
What speed does he need ? (23.8 m) / (1.8 sec) = <u>13.222 m/sec</u>
What speed is he flying now? <u>3.7m/s</u>
How much does he need to increase it ? (13.222 - 3.7) = <em>9.5 m/s</em> faster
Answer:
L = 0.475 m = 475 mm = 18.7 inches
Explanation:
A cylindrical specimen of a nickel alloy having an elastic modulus of 207 GPa and an original diameter of 10.2 mm (0.40 in.) will experience only elastic deformation when a tensile load of 8900 N (2000 lb ) is applied. Compute the maximum length of the specimen before deformation if the maximum allowable elongation is 0.25 mm (0.010 in).
E = 207 GPa = 207*10⁹ Pa
D = 10.2 mm = 0.0102 m
P = 8900 N
ΔL = 0.25 mm = 2.5*10⁻⁴ m
L = ?
We can use the Equation of the Hooke's Law
ΔL = P*L / (A*E) ⇒ L = ΔL*A*E / P
⇒ L = (2.5*10⁻⁴ m)*(π*(0.0102 m)²*0.25)*(207*10⁹ Pa) / (8900 N)
⇒ L = 0.475 m = 475 mm = 18.7 inches
Answer:
5 .07 s .
Explanation:
The child will move on a circle of radius r
r = 1.5 m
Let the velocity of rotation = v
radial acceleration = v² / r
v² / r = 2.3
v² = 2.3 r = 2.3 x 1.5
= 3.45
v = 1.857 m /s
Time of revolution = 2π r / v
= 2 x 3.14 x 1.5 / 1.857
= 5 .07 s .
<h3>Answer</h3>
m/s^2 (meter per sec square)
Explanation:
acc = change in velocity/time
= distance/time
----------------
time
= m/s
------
s
=m/s^2