Answer:
E = 1.50 ×
V/m
Explanation:
given data
B = 0.50 T
solution
we know that energy density by the magnetic field is express as
...............1
and
energy density due to electric filed is
...............2
and here 
so that
E =
...................3
put here value and we get
E = 3 ×
× 0.50
E = 1.50 ×
V/m
Answer:
Your answer will be C. 3.8 kPa.
Answer:
A. There are multiple paths that electrons can take through the circuit, and it is possible for the electron to pass through one circuit component but not another.
Explanation:
Parallel arrangement of components in an electric circuit puts different parts of the circuit on different branches. In a parallel connection, there are multiple paths for the electrons to take, and it is possible for electrons to pass through on circuit component without going through another. This is the reason why If there is a break in one branch of the circuit, electrons can still flow in other branches, and the same reason why one bulb going off in your home does prevent the other components in your home from coming on (your home is wired in a parallel electric circuit).
The average speed of the whole travel is equal to <u>400 mph</u>.
Why?
From the statement, we know that whole travel is divided into three parts. For the first part (traveling from New York to Chicago), we have that it was 3.25 hours and the covered distance was half of the total distance (1400mi). For the second part, we have that it was 1 hour (layover time), and the covered no distance. For the third part (traveling from Chicago to Los Angeles), we have that it was 2.75 hours, and it took the other half of the total distance (1400mi).
We can calculate the average speed of the whol travel using the following formula:

Now, substituting and calculating, we have:


Hence, we have the average speed of the whole travel is equal to 400 mph.
Have a nice day!
Answer:
360J
Explanation:
In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.