1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zanzabum
3 years ago
7

How many pounds of meat does a cougar eat per day

Physics
1 answer:
Luba_88 [7]3 years ago
4 0
A large male cougar living in the Cascade Mountains kills a deer or elk every 9 to 12 days, eating up to 20 pounds at a time and burying the rest for later.Except for females with young, cougars are lone hunters that wander between places frequented by their prey, covering as much as 15 miles in a single night.Cougars rely on short bursts of speed to ambush their prey. A cougar may stalk an animal for an hour or more 

hope this helps in any way ! :)
You might be interested in
The ball rolling along a straight and level path. The ball is rolling at a constant
Aleksandr-060686 [28]

Answer:6 joules

Explanation:

Mass(m)=3kg

Velocity(v)=2m/s

Kinetic energy=0.5 x m x v^2

Kinetic energy=0.5 x 3 x 2^2

Kinetic energy=0.5 x 3 x 2 x 2

Kinetic energy=6

6 0
2 years ago
A ball is thrown with an initial speed vi at an angle i with the horizontal. The horizontal range of the ball is R, and the ball
adell [148]

Answer:

Part a)

T = 2\sqrt{\frac{R}{3g}}

Part b)

v_x = \frac{\sqrt{3Rg}}{2}

Part c)

v_y = \sqrt{Rg/3}

Part d)

v = \frac{1}{2}\sqrt{13Rg}

Part e)

\theta_i = 33.7 degree

Part f)

H = \frac{13R}{8}

Part g)

X = \frac{13R}{4}

Explanation:

Initial speed of the launch is given as

initial speed = v_i

angle = \theta_i degree

Now the two components of the velocity

v_x = v_i cos\theta_i

similarly we have

v_y = v_i sin\theta_i

Part a)

Now we know that horizontal range is given as

R = \frac{v_i^2 (2sin\theta_icos\theta_i)}{g}

maximum height is given as

H = \frac{R}{6} = \frac{v_i^2 sin^2\theta_i}{2g}

so we have

v_i sin\theta = \sqrt{Rg/3}

time of flight is given as

T = \frac{2v_isin\theta_i}{g}

T = \frac{2\sqrt{Rg/3}}{g}

T = 2\sqrt{\frac{R}{3g}}

Part b)

Now the speed of the ball in x direction is always constant

so at the peak of its path the speed of the ball is given as

R = v_x T

R = v_x 2\sqrt{\frac{R}{3g}}

v_x = \frac{\sqrt{3Rg}}{2}

Part c)

Initial vertical velocity is given as

v_y = v_i sin\theta_i

v_i sin\theta = \sqrt{Rg/3}

Part d)

Initial speed is given as

v = \sqrt{v_x^2 + v_y^2}

so we will have

v = \sqrt{Rg/3 + 3Rg/4}

v = \frac{1}{2}\sqrt{13Rg}

Part e)

Angle of projection is given as

tan\theta_i = \frac{v_y}{v_x}

tan\theta_i = \frac{\sqrt{Rg/3}}{\sqrt{3Rg}/2}

\theta_i = 33.7 degree

Part f)

If we throw at same speed so that it reach maximum height

then the height will be given as

H = \frac{v^2}{2g}

H = \frac{13R}{8}

Part g)

For maximum range the angle should be 45 degree

so maximum range is

X = \frac{v^2}{g}

X = \frac{13R}{4}

3 0
3 years ago
(a) If a proton with a kinetic energy of 6.2 MeV is traveling in a particle accelerator in a circular orbit with a radius of 0.5
Tju [1.3M]

Answer:

The fraction of its energy that it radiates every second is 3.02\times10^{-11}.

Explanation:

Suppose Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge that has charge q and acceleration a is given by

\dfrac{dE}{dt}=\dfrac{q^2a^2}{6\pi\epsilon_{0}c^3}

Given that,

Kinetic energy = 6.2 MeV

Radius = 0.500 m

We need to calculate the acceleration

Using formula of acceleration

a=\dfrac{v^2}{r}

Put the value into the formula

a=\dfrac{\dfrac{1}{2}mv^2}{\dfrac{1}{2}mr}

Put the value into the formula

a=\dfrac{6.2\times10^{6}\times1.6\times10^{-19}}{\dfrac{1}{2}\times1.67\times10^{-27}\times0.51}

a=2.32\times10^{15}\ m/s^2

We need to calculate the rate at which it emits energy because of its acceleration is

\dfrac{dE}{dt}=\dfrac{q^2a^2}{6\pi\epsilon_{0}c^3}

Put the value into the formula

\dfrac{dE}{dt}=\dfrac{(1.6\times10^{-19})^2\times(2.3\times10^{15})^2}{6\pi\times8.85\times10^{-12}\times(3\times10^{8})^3}

\dfrac{dE}{dt}=3.00\times10^{-23}\ J/s

The energy in ev/s

\dfrac{dE}{dt}=\dfrac{3.00\times10^{-23}}{1.6\times10^{-19}}\ J/s

\dfrac{dE}{dt}=1.875\times10^{-4}\ ev/s

We need to calculate the fraction of its energy that it radiates every second

\dfrac{\dfrac{dE}{dt}}{E}=\dfrac{1.875\times10^{-4}}{6.2\times10^{6}}

\dfrac{\dfrac{dE}{dt}}{E}=3.02\times10^{-11}

Hence, The fraction of its energy that it radiates every second is 3.02\times10^{-11}.

5 0
2 years ago
How could I tell if an egg is hard boiled or raw explain using Newton's law of motion
Thepotemich [5.8K]

Answer:

Explanation:

Newton's 2 nd law of motion tells that when equal torque is applied on object having higher moment of inertia , it will rotate slower .

Moment of inertia of boiled egg is higher because the whole egg rotates as s solid unit . Hence it will rotate slower or it rolls slower on an inclined surface .

In this way by applying Newton's law , we can identify raw or boiled egg .

6 0
2 years ago
An astronaut on the moon drops a feather from rest (v = 0). The acceleration due to gravity is 1.67 m/s​ 2​ . If the feather beg
olga_2 [115]

Given :

Initial velocity , u = 0 m/s .

Acceleration due to gravity on moon , g_m=1.67\ m/s^2 .

Height , h = 2 m .

To Find :

Final position after falling for 1.5 seconds .

Solution :

We know , by equation of motion :

s=ut+\dfrac{at^2}{2}

Here , a = g_m .

So , equation will transform by :

s=ut+\dfrac{g_mt^2}{2}\\\\s=0+\dfrac{1.67\times 1.5^2}{2}\ m\\\\s=1.88\ m

Therefore , the height form moon's surface is 1.88 m .

Hence , this is the required solution .

6 0
3 years ago
Other questions:
  • Does light travels faster in a material with a higher index of refraction
    5·2 answers
  • A fluorine atom has 7 valence electrons in its second shell.
    7·1 answer
  • Which moon has a thick atmosphere made mostly of nitrogen?
    6·1 answer
  • PLZ HELP!!I WILL MAKE YOUR ANSWER BRAINLIEST!!!!!
    13·1 answer
  • gabriel and arely have performed an experiment and are not sure their results are valid. what should they do to check their resu
    11·2 answers
  • A vector has components x=6 m and y=8 m. what is its magnitude and direction?
    9·1 answer
  • Sonia O'Sullivan of Ireland set the World Record in 1994 for the Women's 1000 m race with a time of 2 minutes and 45 seconds. Wh
    8·2 answers
  • A student is constructing an investigation on static electricity. The student has three balloons and rubs two of them on a piece
    13·1 answer
  • Tiny mass of 67kg and tubby mass of 83 kg are now on the opposite ends of a see saw and are both 1.4m from the balance point whe
    9·1 answer
  • Why is a flower not a good blackbody radiator?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!