Answer:

Explanation:
You calculate the energy required to break all the bonds in the reactants.
Then you subtract the energy needed to break all the bonds in the products.
N₂ + O₂ ⟶ 2NO
N≡N + O=O ⟶ 2O-N=O
Bonds: 2N≡N 1O=O 2N-O + 2N=O
D/kJ·mol⁻¹: 941 495 201 607

Answer:
Vi = 94.64 m/s
Explanation:
I order to find out the initial velocity of the object, we can use third equation of motion:
2ah = Vf² - Vi²
where,
a = acceleration = -9.8 m/s²
h = maximum height covered by object = 460 m - 3 m = 457 m
Vf = Final Velocity = 0 m/s (since, object momentarily stops at highest point)
Vi = Initial Velocity = ?
Therefore,
2(-9.8 m/s²)(457 m) = (0 m/s)² - Vi²
Vi = √8957.2 m²/s²
<u>Vi = 94.64 m/s</u>
Answer:
The maximum height above the point of release is 11.653 m.
Explanation:
Given that,
Mass of block = 0.221 kg
Spring constant k = 5365 N/m
Distance x = 0.097 m
We need to calculate the height
Using stored energy in spring
...(I)
Using gravitational potential energy
....(II)
Using energy of conservation




Where, k = spring constant
m = mass of the block
x = distance
g = acceleration due to gravity
Put the value in the equation


Hence, The maximum height above the point of release is 11.653 m.