the SL unit of acceleration is the meter per second squared
The correct answer is
<span>c. one person exerts more force than the other so that the forces are unbalanced.
In fact, the door is initially at rest. In order to move the door, a net force different from zero should be applied, according to Newton's second law:
</span>

<span>where the term on the left is the resultant of the forces acting on the door, m is the door mass and a its acceleration.
In order to move the door, the acceleration must be different from zero. But this means that the resultant of the forces acting on it must be different from zero: this is possible only if the forces applied by the two persons are unbalanced, i.e. one person exerts more force than the other.</span>
Answer: critical angle, sin^-1 (n2/n1)
Explanation: the angle of incidence at which the retracted ray makes an angle of 90° with the normal is known as the critical angle.
Snell's law defined refraction mathematically as shown below
n1 sin θi = n2 sin θr
n1 = refractive index of the first medium
n2 = refractive index of the second medium
θi = angle of incidence
θr = angle of refraction
When the refrafted ray is perpendicular to the normal, the angle of refraction (θr) is 90° hence making the angle of incidence (θi) the critical angle θc
By substituting these conditions into the Snell's law, we have that
n1 sin θc = n2 sin 90
According to trigonometry, the value of sin 90 is 1, hence we have that
n1 sin θc =n2
sin θc = n2/n1
θc = sin^-1 (n2/n1)
Reactant is<span> a substance that is in a chemical </span>reaction<span>. Product is a substance that is produced by the chemical </span>reaction. A chemical change that you are familiar with isrust<span>. In this chemical </span>reaction<span>, </span>oxygen<span> and </span>iron<span>, which are the </span>reactants,combine to form<span> a product called </span>iron oxide(rust<span>)
(Mark me as brainiest, vote, and give thanks! Trying to rank up!)</span>
Explanation:
It is given that,
The separation between two parallel wires, r = 5.6 cm = 0.056 m
Current in both the wires is 2.65 A
(a) We need to find the magnitude of the force per unit length between the wires. It can be given by :

(b) As the current is in same direction, the wires will attract each other.