You can compare the velocity of the car, 60 mph, with the velocity that a mass would acquire when falls from certain height.
First, convert 60 mph to m/s:
60 miles/h * 1.60 km/mile * 1000 m/km * 1h/3600s = 26.67 m/s
Second, calculate from what height a body in free fall reachs 26.67 m/s velocity when hits the floor.
free fall => Vf^2 = 2g*H => H = Vf^2 / (2g)
H = (26.67m/s)^2 / (2*9.8 m/s) = 36.2 m
If you consider that the height between the floors of a building is approximately 3.6 m, you get 36.2 m / 3.6 m/floor = 10 floors.
Then, you conclude that the force of impact is the same as driving you vehicle off a 10 story building.
<span>............D. Elliptical</span>
The answer is b because the sun's surface temperature is 5,778 K.
That's 105 km that he flew, or 65.2 miles ! I'm absolutely positive
that the crow must have landed and gotten some rest when you
weren't looking. But that had no effect on his displacement when
he got where he was going, so we can continue to solve the problem:
The displacement is the distance and direction from the place
where the crow took off to the place where he landed.
-- It's distance is the hypotenuse of the right triangle whose legs
are 60 km and 45 km.
D² = (60 km)² + (45 km)²
= 3,600 km² + 2,025 km² = 5,625 km²
D = √(5625 km²) = 75 km .
-- It's direction is the angle whose tangent is (45 S / 60 W).
tan⁻¹ (45/60) = tan⁻¹ (0.75) = 36.9° south of west
= 53.1° west of south.
= not exactly southwest but close.
Answer:
C hope it helps
call the client and inform her that she was incorrectly charged.