Answer:
54 km/h
Explanation:
given,
speed of the biker = 36 Km/h
time = 10 s
acceleration = 0.5 m/s²
speed at which it crosses the finish line = ?
v = 36 x 0.278 = 10 m/s
using equation of motion
v = u + a t
v = 10 + 0.5 x 10
v = 15 m/s
v = 15 x 3.6 = 54 km/hr
speed at which the biker crosses the finish line is equal to 54 km/h
The formula of the kinetic energy is:

where m is a mass of the object, v is speed of the object at the moment of time. So we have:

The answer is
2000 Joules.
Explanation:
The average speed of a modern cruise ship is roughly 20 knots (23 miles per hour), with maximum speeds reaching about 30 knots (34.5 miles per hour).
Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy.
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s