Answer:
You just have to divide the equation by "x"'s coefficient (2).
2x/2=x
66/2=33
x=33
Step-by-step explanation:
Answer:
On occasions you will come across two or more unknown quantities, and two or more equations
relating them. These are called simultaneous equations and when asked to solve them you
must find values of the unknowns which satisfy all the given equations at the same time.
Step-by-step explanation:
1. The solution of a pair of simultaneous equations
The solution of the pair of simultaneous equations
3x + 2y = 36, and 5x + 4y = 64
is x = 8 and y = 6. This is easily verified by substituting these values into the left-hand sides
to obtain the values on the right. So x = 8, y = 6 satisfy the simultaneous equations.
2. Solving a pair of simultaneous equations
There are many ways of solving simultaneous equations. Perhaps the simplest way is elimination. This is a process which involves removing or eliminating one of the unknowns to leave a
single equation which involves the other unknown. The method is best illustrated by example.
Example
Solve the simultaneous equations 3x + 2y = 36 (1)
5x + 4y = 64 (2) .
Solution
Notice that if we multiply both sides of the first equation by 2 we obtain an equivalent equation
6x + 4y = 72 (3)
Now, if equation (2) is subtracted from equation (3) the terms involving y will be eliminated:
6x + 4y = 72 − (3)
5x + 4y = 64 (2)
x + 0y = 8
Well I'm assuming that you want me to simplify the fraction 40/6. Since 40 can go into 6 multiple times, this fraction is going to be a mixed number.
40/6 in simplest form is 6 2/3. Hope I helped!
Answer:
a: 0.9544 9 within 8 units)
b: 0.9940
Step-by-step explanation:
We have µ = 300 and σ = 40. The sample size, n = 100.
For the sample to be within 8 units of the population mean, we would have sample values of 292 and 308, so we want to find:
P(292 < x < 308).
We need to find the z-scores that correspond to these values using the given data. See attached photo 1 for the calculation of these scores.
We have P(292 < x < 308) = 0.9544
Next we want the probability of the sample mean to be within 11 units of the population mean, so we want the values from 289 to 311. We want to find
P(289 < x < 311)
We need to find the z-scores that correspond to these values. See photo 2 for the calculation of these scores.
We have P(289 < x < 311) = 0.9940
Answer:
13
Step-by-step explanation:
Sorry i cannot showy solution