Answer:
7 monkeys
Step-by-step explanation:
Answer:
that correct answer is D, Substitute the coordinates x and y-value in the equation, (12 is the x-value, 10 is the y-value). 10 is not equal to 22 + 12, so the correct answer is D.
Hope this helps!
If the diameter is 10.5 then the radius is 5.25.
This is because the radius of a diameter is half the diameter.
So
10.5/2
= 5.25
Therefore the radius is 5.25
<u>Differentiate using the Quotient Rule</u> –
![\qquad](https://tex.z-dn.net/?f=%5Cqquad)
![\pink{\twoheadrightarrow \sf \dfrac{d}{dx} \bigg[\dfrac{f(x)}{g(x)} \bigg]= \dfrac{ g(x)\:\dfrac{d}{dx}\bigg[f(x)\bigg] -f(x)\dfrac{d}{dx}\:\bigg[g(x)\bigg]}{g(x)^2}}\\](https://tex.z-dn.net/?f=%5Cpink%7B%5Ctwoheadrightarrow%20%5Csf%20%5Cdfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%5Cdfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5Cbigg%5D%3D%20%5Cdfrac%7B%20g%28x%29%5C%3A%5Cdfrac%7Bd%7D%7Bdx%7D%5Cbigg%5Bf%28x%29%5Cbigg%5D%20-f%28x%29%5Cdfrac%7Bd%7D%7Bdx%7D%5C%3A%5Cbigg%5Bg%28x%29%5Cbigg%5D%7D%7Bg%28x%29%5E2%7D%7D%5C%5C)
According to the given question, we have –
- f(x) = x^3+5x+2
- g(x) = x^2-1
Let's solve it!
![\qquad](https://tex.z-dn.net/?f=%5Cqquad)
![\green{\twoheadrightarrow \bf \dfrac{d}{dx}\bigg[ \dfrac{x^3+5x+2 }{x^2-1}\bigg]} \\](https://tex.z-dn.net/?f=%5Cgreen%7B%5Ctwoheadrightarrow%20%5Cbf%20%5Cdfrac%7Bd%7D%7Bdx%7D%5Cbigg%5B%20%5Cdfrac%7Bx%5E3%2B5x%2B2%20%7D%7Bx%5E2-1%7D%5Cbigg%5D%7D%20%5C%5C)
![\qquad](https://tex.z-dn.net/?f=%5Cqquad)
![\twoheadrightarrow \sf \dfrac{(x^2-1) \dfrac{d}{dx}(x^3+5x+2) - ( x^3+5x+2) \dfrac{d}{dx}(x^2-1)}{(x^2-1)^2 }\\](https://tex.z-dn.net/?f=%5Ctwoheadrightarrow%20%5Csf%20%5Cdfrac%7B%28x%5E2-1%29%20%5Cdfrac%7Bd%7D%7Bdx%7D%28x%5E3%2B5x%2B2%29%20-%20%28%20x%5E3%2B5x%2B2%29%20%20%5Cdfrac%7Bd%7D%7Bdx%7D%28x%5E2-1%29%7D%7B%28x%5E2-1%29%5E2%20%7D%5C%5C)
![\qquad](https://tex.z-dn.net/?f=%5Cqquad)
![\twoheadrightarrow \sf \dfrac{(x^2-1)(3x^2+5) - ( x^3+5x+2) 2x}{(x^2-1)^2 }\\](https://tex.z-dn.net/?f=%5Ctwoheadrightarrow%20%5Csf%20%5Cdfrac%7B%28x%5E2-1%29%283x%5E2%2B5%29%20%20-%20%20%28%20x%5E3%2B5x%2B2%29%202x%7D%7B%28x%5E2-1%29%5E2%20%7D%5C%5C)
![\qquad](https://tex.z-dn.net/?f=%5Cqquad)
![\pink{\sf \because \dfrac{d}{dx} x^n = nx^{n-1} }\\](https://tex.z-dn.net/?f=%20%5Cpink%7B%5Csf%20%5Cbecause%20%5Cdfrac%7Bd%7D%7Bdx%7D%20x%5En%20%3D%20nx%5E%7Bn-1%7D%20%7D%5C%5C)
![\qquad](https://tex.z-dn.net/?f=%5Cqquad)
![\twoheadrightarrow \sf \dfrac{3x^4+5x^2-3x^2-5-(2x^4+10x^2+4x)}{(x^2-1)^2 }\\](https://tex.z-dn.net/?f=%5Ctwoheadrightarrow%20%5Csf%20%5Cdfrac%7B3x%5E4%2B5x%5E2-3x%5E2-5-%282x%5E4%2B10x%5E2%2B4x%29%7D%7B%28x%5E2-1%29%5E2%20%7D%5C%5C)
![\qquad](https://tex.z-dn.net/?f=%5Cqquad)
![\twoheadrightarrow \sf \dfrac{3x^4+5x^2-3x^2-5-2x^4-10x^2-4x}{(x^2-1)^2 }\\](https://tex.z-dn.net/?f=%5Ctwoheadrightarrow%20%5Csf%20%5Cdfrac%7B3x%5E4%2B5x%5E2-3x%5E2-5-2x%5E4-10x%5E2-4x%7D%7B%28x%5E2-1%29%5E2%20%7D%5C%5C)
![\qquad](https://tex.z-dn.net/?f=%5Cqquad)
![\green{\twoheadrightarrow \bf \dfrac{x^4-8x^2-4x-5}{(x^2-1)^2 }}\\](https://tex.z-dn.net/?f=%5Cgreen%7B%5Ctwoheadrightarrow%20%5Cbf%20%5Cdfrac%7Bx%5E4-8x%5E2-4x-5%7D%7B%28x%5E2-1%29%5E2%20%7D%7D%5C%5C)
![\qquad](https://tex.z-dn.net/?f=%5Cqquad)
![\pink{\therefore \bf{\green{\underline{\underline{\dfrac{d}{dx} \dfrac{x^3+5x+2 }{x^2-1}} = \dfrac{x^4-8x^2-4x-5}{(x^2-1)^2 }}}}}\\\\](https://tex.z-dn.net/?f=%5Cpink%7B%5Ctherefore%20%20%5Cbf%7B%5Cgreen%7B%5Cunderline%7B%5Cunderline%7B%5Cdfrac%7Bd%7D%7Bdx%7D%20%5Cdfrac%7Bx%5E3%2B5x%2B2%20%7D%7Bx%5E2-1%7D%7D%20%20%3D%20%20%5Cdfrac%7Bx%5E4-8x%5E2-4x-5%7D%7B%28x%5E2-1%29%5E2%20%7D%7D%7D%7D%7D%5C%5C%5C%5C)