Answer:
yes, should be
Explanation:
This is a hard yes or no question becuase the amplitudes are the same height but in different beating orders.
Because it generates enough momentum to keep the train going with out really having to speed up
Answer:
0.099C
Explanation:
First, we need to get the common potential voltage using the formula

Where V is the common voltage, C and V represent capacitance and charge respectively. Subscripts 1 and 2 to represent the the first and second respectively. Substituting the above with the following given values then

Therefore

Charge, Q is given by CV hence for the first capacitor charge will be 
Here, 
Answer:
a) 16 N
b) 2.13 m/s²
Explanation:
Draw a free body diagram of the tv stand. There are four forces:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
and applied force P pulling right.
Sum of forces in the y direction:
∑F = ma
N − mg = 0
N = mg
The net force in the x direction is:
∑F = P − Nμ
∑F = P − mgμ
∑F = 25 N − (7.5 kg) (10 m/s²) (0.12)
∑F = 16 N
Net force equals mass times acceleration:
∑F = ma
16 N = (7.5 kg) a
a = 2.13 m/s²
Answer:
Fnet - Fg
Explanation:
When an object is in an elevator, its weight varies with respect to the direction of movement of the elevator and the elevators acceleration.
The weight, W, of an object can be expressed as;
W = mg
where m is the object's mass, and g is the acceleration due gravity.
If the object is in an elevator that speed up, an apparent weight would be felt since both mass and elevator are moving against gravitational pull of the earth.
So that,
= mg + ma
where: mg is the weight of the object, and ma is the apparent weight.
Apparent weight (ma) =
- mg