Answer:
The correct solution is "14.6875 kg".
Explanation:
Given values:
Force,
F = 47.0 N
Acceleration,
a = 3.20 m/s²
Now,
⇒ 
or,
⇒ 
⇒ 
⇒ 
⇒ 
Answer:
electric
<em>please give brainliest</em>
Answer:
a) F = 680 N, b) W = 215 .4 J
, c) F = 1278.4 N
Explanation:
a) Hooke's law is
F = k x
To find the displacement (x) let's use the elastic energy equation
= ½ k x²
k = 2
/ x²
k = 2 85.0 / 0.250²
k = 2720 N / m
We replace and look for elastic force
F = 2720 0.250
F = 680 N
b) The definition of work is
W = ΔEm
W =
- 
W = ½ k (
² - x₀²)
The final distance
= 0.250 +0.220
= 0.4750 m
We calculate the work
W = ½ 2720 (0.47² - 0.25²)
W = 215 .4 J
We calculate the strength
F = k 
F = 2720 0.470
F = 1278.4 N
Answer:
240 kg * m/s
Explanation:
Given
mass (m) = 60 kg
velocity (v) = 4 m/s
Momentum = ?
We know that
Momentum is the product of mass and velocity so
Momentum = m * v
= 60 * 4
= 240 kg * m/s
Hope it helps :)