Answer: Option B) False
Explanation:
Current is the movement of negative charges called electrons. Protons, neutrons and electrons are the three subatomic particles that make up particles of the conductors that transmit current, however electrons are negatively charged and their gain or loss determines movement of electric current.
Thus, the statement is false
Answer:
The time is 133.5 sec.
Explanation:
Given that,
One side of cube = 10 cm
Intensity of electric field = 11 kV/m
Suppose How long will it take to raise the water temperature by 41°C Assume that the water has no heat loss during this time.
We need to calculate the rate of energy transfer from the beam to the cube
Using formula of rate of energy


Put the value into the formula


We need to calculate the amount of heat
Using formula of heat


Put the value into the formula


We need to calculate the time
Using formula of time

Put the value into the formula


Hence, The time is 133.5 sec.
Answer:
D. By comparing traits
Explanation:
Because age isn't genetic, as well as names, as well as who discovered, but traits are genetic.
Abstract. Abstract is defined as an idea or plan but no actions are done
to pursue the idea. When setting goals, one must be certain and it should be attainable in order
to achieve the goal being set. Goals that are abstract
are often poorly written and uncertain
:)
Answer:
<em>The electric field can either oscillates in the z-direction, or the y-direction, but must oscillate in a direction perpendicular to the direction of propagation, and the direction of oscillation of the magnetic field.</em>
Explanation:
Electromagnetic waves are waves that have an oscillating magnetic and electric field, that oscillates perpendicularly to one another. Electromagnetic waves are propagated in a direction perpendicular to both the electric and the magnetic field. If the wave is propagated in the x-direction, then the electric field can either oscillate in the y-direction, or the z-direction but must oscillate perpendicularly to both the the direction of oscillation of the magnetic field, and the direction of propagation of the wave.