Answer:
t = 5.89 s
Explanation:
To calculate the time, we need the radius of the pulley and the radius of the sphere which was not given in the question.
Let us assume that the radius of the pulley (
) = 0.4 m
Let the radius of the sphere (r) = 0.5 m
w = angular speed = 150 rev/min = (150 × 2π / 60) rad/s = 15.708 rad/s
Tension (T) = 20 N
mass (m) = 3 kg each


Substituting values:

Answer: VENUS
Explanation:
Venus tiene una lenta rotación retrógrada, lo que significa que gira de este a oeste, en lugar de hacerlo de oeste a este como lo hacen la mayoría de los demás planetas mayores (Urano también tiene una rotación retrógrada, aunque el eje de rotación de Urano, inclinado 97.86°, prácticamente descansa sobre el plano.
Answer:
each resistor is 540 Ω
Explanation:
Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance
defined by the formula:

Therefore, R/3 is the equivalent resistance of the initial circuit.
In the second circuit, two of the resistors are in parallel, so they are equivalent to:

and when this is combined with the third resistor in series, the equivalent resistance (
) of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):

The problem states that the difference between the equivalent resistances in both circuits is given by:

so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:
