1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vfiekz [6]
3 years ago
12

An electron (q=-1.602×10-19C) is placed .03m away from spherical object with a net charge of -7.2 C.

Physics
1 answer:
vovangra [49]3 years ago
8 0

Answer:

Explanation:

electric field at the location of electron

= 9 x 10⁹ x 7.2 / .03²

= 72 x 10¹² N/C

force on electron = electric field x charge on electron

= 72 x 10¹² x 1.6 x 10⁻¹⁹

= 115.2 x 10⁻⁷ N .

C )

work done = charge on electron x potential difference at two points

potential at .03 m

= 9 x 10⁹ x 7.2 / .03

= 2.16 x 10¹² V

potential at .001 m

= 9 x 10⁹ x 7.2 / .001

= 64.8 x 10¹² V

potential difference = (64.8 - 2.16 )x 10¹² V

= 62.64 x 10¹² V  .

work done = 62.64 x 10¹² x 1.6 x 10⁻¹⁹

= 100.224 x 10⁻⁷ J .

D )

There will be no change in the magnitude of force on positron except that the direction of force will be reversed . In case of electron , there will be repulsion and in case of positron , there will be attraction .

Work done in case of electron will be positive and work done in case of positron will be negative .

electric field due to charge will be same in both the cases .

You might be interested in
What are compounds made of
nlexa [21]
Two or more elements that are chemically combined
6 0
3 years ago
If you wish to observe features that are around the size of atoms, say 1 .5 x 100 m, with electromagnetic radiation, the radiati
chubhunter [2.5K]

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

If you wish to observe features that around the size of atoms, say 1.5×10⁻¹⁰ m, with electromagnetic radiation, the radiation must have a wavelength about the size of the atom itself.

a) If you had a microscope which was capable of doing this, what would the frequency of electromagnetic radiation be, in hertz that you would have to use?

b) What type of electromagnetic radiation would this be?

Given Information:

Wavelength = λ = 1.5×10⁻¹⁰  m

Required Information:

a) Frequency = f = ?

b) Type of electromagnetic radiation = ?

Answer:

a) Frequency = f = 2×10¹⁸ Hz

b) Type of electromagnetic radiation = X-rays

Explanation:

a) The frequency of the electromagnetic radiation is given by

f = c/ λ

Where λ  is the wavelength of the electromagnetic radiation and c is the speed of light and its value is 3×10⁸ m/s

f = 3×10⁸/1.5×10⁻¹⁰

f = 2×10¹⁸ Hz

Therefore, the frequency of the electromagnetic radiation would be 2×10¹⁸ Hz.

b)

The frequency range of X-rays is 3×10¹⁶ Hz to 3×10¹⁹ Hz

The frequency 2×10¹⁸ lies in that range, therefore, the type of electromagnetic radiation is X-rays

5 0
3 years ago
Explain why competitive athletes do not smoke give as many reasons as you can
Dvinal [7]

Answer:

Your muscles need oxygen to perform their function, and a reduction in the oxygen making its way to them means that muscles don't work as effectively. ... These negative effects are why most athletes don't smoke.

Explanation:

5 0
3 years ago
Hamid is going to heat sodium chloride and water in a beaker. How can he carry out his experiment as
wolverine [178]

Answer:

he can wear gogles lab coat and gloves

Explanation:

4 0
3 years ago
Why don’t we feel the gravitational force of a large object such as a skyscraper semi-truck?
Kobotan [32]

Answer:

Se the explanation below

Explanation:

We do not feel these forces of these bodies, because they are very small compared to the force of Earth's attraction. Although its mass is greater than that of a human being, its mass is not compared to the Earth's mass. In order to understand this problem we will use numerical data and the universal gravitation formula, to give validity to the explanation.

<u>Force exerted by the Earth on a human being</u>

<u />

F=G*\frac{m_{1}*m_{2}}{r^2}

Where:

G = universal gravitation constant = 6.673*10^-11 [N*m^2/kg^2]

m1 = mass of the person = 80 [kg]

m2 = mass of the earth 5.97*10^24[kg]

r = distance from the center of the earth to the surface or earth radius = 6371 *10^3 [m]

<u />

Now replacing we have

F = 6.673*10^{-11} *\frac{80*5.97*10^{24}}{(6371*10^{3})^{2}  } \\F = 785[N]

<u>Force exerted by a building on a human being</u>

<u />

Where:

G = universal gravitation constant = 6.673*10^-11 [N*m^2/kg^2]

m1 = mass of the person = 80 [kg]

m2 = mass of the earth 300000 [ton] = 300 *10^6[kg]

r = distance from the building to the person = 2[m]

F = 6.673*10^{-11}*\frac{80*300*10^6}{2^{2} }  \\F= 0.4 [N]

As we can see the force exerted by the Earth is 2000 times greater than that exerted by a building with the proposed data.

8 0
3 years ago
Other questions:
  • A certain car is capable of accelerating at a rate of 10.60 m/s 2 . how long does it take for this car to go from a speed of 55
    9·1 answer
  • What is #6<br><br> IM GIVING 40 POINTS
    13·1 answer
  • You are an employee of the city of Chicago. A city official declares that all cables holding traffic lights in the city should b
    8·1 answer
  • Is silicone a better conductor then silver
    7·1 answer
  • What object is shown below? ASAP
    8·2 answers
  • (1) In nondestructive testing, a discontinuity may be defined as an interruption in the normal physical structure or configurati
    11·1 answer
  • How many atoms of nitrogen are in the chemical formula Ni(NO2),?<br>W ON​
    8·1 answer
  • How do I learn French fast for an examination​
    5·1 answer
  • Electromagnetic waves are sometimes demonstrated by rippling waves in water. However, electromagnetic waves are different from w
    10·2 answers
  • (10%) Problem 2: The frequency range for AM radio is 540 to 1600 kHz. The frequency range for FM radio is 88.0 to 108 MHz.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!