Answer:
Carbon dioxide is used up, and oxygen is produced.
Explanation:
For photosynthesis to occur the plant need carbon dioxide water and sunlight to convert it into glucose for it to eat and oxygen is a byproduct of the chemical reaction.
A chemical property of a substance is a certain characteristic that can only be observed by participating in a chemical reaction. Alternatively, a chemical property of a substance is something that can only be observed when the substance undergoes a chemical change.
I'm not sure what you're supposed to do with the first four boxes; all four are examples of chemical properties. Do you have to name the specific type of chemical property as given in the description? If so, the following would be my answers:
Flammability/Combustibility: The ability of a substance to burn.
The next two are quite strange; I'm not aware of a term that cleanly describes reactivity with water or acid. I suspect that, given the level of the material here, the general property of "reactivity" might be the answer for both the second and third descriptions
(Water-)reactivity: Some substances react when put in water.
(Acid-)reactivity: Some substances react when put in acid.
Light sensitivity: Light can interact with some things to form new substances.
As for the chart, I've filled it in as shown in the attached image. Please take care to double-check what I've written; in particular, when it comes to the property, I might have used a different term from what you were taught in class or provided in some other resource that I don't have access to. I've also color-coded qualitative/quantitative and physical/chemical for your convenience.
Water and dimond are the 2 pure substances
Answer:K subscript e q equals StartFraction StartBracket upper C upper O subscript 2 EndBracket StartBracket upper C a upper O EndBracket over StartBracket upper C a upper C upper O subscript 3 EndBracket EndFraction
Explanation: the answer has it's root in Law of mass action which states that; the rate of a chemical reaction is directly proportional to the product of the concentrations of the reactants raised to their respective stoichiometric coefficients.
The element of the group 17 that is most active non metal is fluorine.
The group 17 of the periodic table contains bromine(Br), iodine(I), Chlorine(Cl) and fluorine(F).
Among all the elements of the group 17. Fluorine is the smallest in size.
Because of the small size of fluorine it has the highest electronegativity in group 17.
This high electronegativity makes it a very active non metal. It provides a very high oxidizing power and low dissociation energy to the fluorine atom.
Also because of the very small size the source of attraction between the nucleus and the electrons is very high in floor in atom.
It reacts readily to form oxides and hydroxides.
So, we can conclude here that fluorine is the most active non metal of group 17.
To know more about group 17, visit,
brainly.com/question/26440054
#SPJ4