N2 + 3H2 --> 2NH3
When 100g of N2 , no of moles of N2= 100/(28)=3.57 mol
no. of moles of h2 = 6/(2)=3mol
Therefore h2 is limiting reagent.
no. of moles of ammonia= 3/3*2=2moles
mass of ammonia produced= 2 mol * (14+3)= 34g
Answer:
a frisbee flaying in the air
Explanation:
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where;
- K.E represents kinetic energy measured in Joules.
- M represents mass measured in kilograms.
- V represents velocity measured in metres per seconds square.
Hence, an example of kinetic energy at work is a frisbee flaying in the air because it would possess energy due to its motion in the air.
Answer: P2O5 is the empirical formula.
Explanation: When given percentages you can assume that many grams of each atom are in the compound. Then you divide grams by the molar mass of each element, giving you moles. Once you have moles, divide by the smaller molar amount, which should give you 1 mol of Phosphorus and 2.5 mol of Oxygen. Then multiply by 2 in order for both moles to be a whole number. This gets you 2 and 5.
Answer: (a) The solubility of CuCl in pure water is
.
(b) The solubility of CuCl in 0.1 M NaCl is
.
Explanation:
(a) Chemical equation for the given reaction in pure water is as follows.

Initial: 0 0
Change: +x +x
Equilibm: x x

And, equilibrium expression is as follows.
![K_{sp} = [Cu^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCu%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)

x = 
Hence, the solubility of CuCl in pure water is
.
(b) When NaCl is 0.1 M,
, 
, 
Net equation: 
= 0.1044
So for, 
Initial: 0.1 0
Change: -x +x
Equilibm: 0.1 - x x
Now, the equilibrium expression is as follows.
K' = 
0.1044 = 
x = 
Therefore, the solubility of CuCl in 0.1 M NaCl is
.
Answer:
here is definition with example