Answer:
D. 100 cm
Explanation:
The speed of a wave is the wavelength times the frequency.
v = λf
Wave A and B have the same speed, so:
λf = λf
(50 cm) (7000 Hz) = λ (3500 Hz)
λ = 100 cm
To continue moving at constant speed in a straight line requires NO net force. Zero. Nada. If there IS any net force on the object, then its speed or direction will change.
Answer:
Magnetic field strength required for this is 0.25 T
Explanation:
As we know that the proton moves in circular path in uniform magnetic field
so the radius of the path of the circle is given as

here we know that




now we have

so we have

Answer:
The speed of the particle is 2.86 m/s
Explanation:
Given;
radius of the circular path, r = 2.0 m
tangential acceleration,
= 4.4 m/s²
total magnitude of the acceleration, a = 6.0 m/s²
Total acceleration is the vector sum of tangential acceleration and radial acceleration

where;
is the radial acceleration

The radial acceleration relates to speed of particle in the following equations;

where;
v is the speed of the particle

Therefore, the speed of the particle is 2.86 m/s
Answer:
1120 N
Explanation:
The velocity with which he hits the water can be found with kinematics:
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (-9.8 m/s²) (-9.00 m)
v = -13.3 m/s
Or it can be found with conservation of energy.
PE = KE
mgh = ½ mv²
v = √(2gh)
v = √(2 × -9.8 m/s² × -9.00 m)
v = -13.3 m/s
Sum of forces on the diver after he hits the water:
∑F = ma
F − mg = m Δv/Δt
F − (74.0 kg) (9.8 m/s²) = (74.0 kg) (0 m/s − (-13.3 m/s)) / (2.50 s)
F = 1120 N