The force which has the greatest effect on causing this object to slow while it remains in contact with the ramp is: B. a frictional force.
<h3>What is a force?</h3>
A force can be defined as a push or pull of an object or physical body, which typically results in a change of motion (acceleration), especially due to the interaction of the object with another.
<h3>The types of force.</h3>
In Science, there are different types of force and these include the following:
<h3>What is a
frictional force?</h3>
Friction force can be defined as a type of force that resists and slows the relative motion of two physical objects when there surfaces come in contact. This ultimately implies that, a frictional force prevents two surfaces from easily sliding over or slipping across one another.
In this context, we can infer and logically deduce that the force which has the greatest effect on causing this object to slow while it remains in contact with the ramp is a frictional force.
Read more on frictional force here: brainly.com/question/25253774
#SPJ1
Complete Question:
Brandon pushes an object on a ramp as shown in the diagram.
While Brandon pushes the object and it remains in contact the ramp, which force has the greatest effect on causing it to slow?
A. the applied force
B. a frictional force
C. the force due to gravity
D. a force of air resistance
<span>procedure would most likely help determine a chemical property of the substance is : exposing it to a flame to see if it catches on fire
Chemical property is the characteristic that a substance has that differntiate it with another substance. The most common charatcteristics that most scientists wanted to know are :
- It's flamability
- It's radioactivity
- Its toxicity
By throwing the object into fire, we will easily find out these 3 characteristics</span>
Answer:

Solution:
As per the question:
Mass of first object, m = 120 kg
Mass of second object, m' = 420 kg
Mass of the third object, M = 69.0 kg
Distance between the m and m', d = 0.380 m
Now,
To calculate the gravitational force on the object of mass, M placed mid-way due to mass, m:
To calculate the gravitational force on the object of mass, M placed mid-way due to mass, m':
To calculate the gravitational force on the object of mass, M placed mid-way due to mass, m and m':


I can't see numbers here, so here are all the answers:
1) the frequency is c/λ = 3e8/556e-9 = 5.39e14Hz
2) light travels at <span>299,792,458 m/s. So in nanoseconds it's 0.299792458m. This is about 1/3 of a meter which is about one foot.
3) length is L = ct = (</span>299,792,458 m/s)(6e-15) = 1.799e-6m or 1.799μm
The speed of the car at the top of the hill is 14m/s
<u>Explanation:</u>
given that
Initial velocity u of the car=0 m/s
The distance can be determined by finding out the difference between the elevation of the first slope and second slope.
elevation of the first slope=26 m
elevation of second slope=16m
distance s=26-16=10 m
acceleration due to gravity g=9.8 m/s2
speed of the car at the top of the hill can be determined by using the equation

speed of the car at the top of the hill is 14m/s