Answer:
it will take 36.12 ms to reduce the capacitor's charge to 10 μC
Explanation:
Qi= C×V
then:
Vi = Q/C = 30μ/20μ = 1.5 volts
and:
Vf = Q/C = 10μ/20μ = 0.5 volts
then:
v = v₀e^(–t/τ)
v₀ is the initial voltage on the cap
v is the voltage after time t
R is resistance in ohms,
C is capacitance in farads
t is time in seconds
RC = τ = time constant
τ = 20µ x 1.5k = 30 ms
v = v₀e^(t/τ)
0.5 = 1.5e^(t/30ms)
e^(t/30ms) = 10/3
t/30ms = 1.20397
t = (30ms)(1.20397) = 36.12 ms
Therefore, it will take 36.12 ms to reduce the capacitor's charge to 10 μC.
<h2>
Answer:</h2>
1000th multiple of the standard reference level for intensities.
<h2>
Explanation:</h2>
The sound intensity level (β), measured in decibels, of a sound with an intensity of I is defined as follows;
β = 10 log (I / I₀) --------------------(i)
Where;
I₀ = reference intensity
Given from the question;
β = sound level = 30dB
Substitute this value into equation (i) as follows;
30 = 10 log (I / I₀)
Divide both sides by 3;
3 = log (I / I₀)
Take antilog of both sides;
10^(3) = (I / I₀)
1000 = I / I₀
Solve for I;
I = 1000I₀
Therefore the intensity of the sound is 1000 times the standard reference level for intensities (I₀)
The answer is False give thanks for the answer m8 and happy Halloween
a. The disk starts at rest, so its angular displacement at time
is

It rotates 44.5 rad in this time, so we have

b. Since acceleration is constant, the average angular velocity is

where
is the angular velocity achieved after 6.00 s. The velocity of the disk at time
is

so we have

making the average velocity

Another way to find the average velocity is to compute it directly via

c. We already found this using the first method in part (b),

d. We already know

so this is just a matter of plugging in
. We get

Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that

Then for
we would get the same
.
Answer:
C
Explanation:
Angular momentum is the product of moment of inertia and angular velocity.
L = I × ω
Since the planet follows a stable circular orbit, I and ω are constant and non-zero. Therefore, the angular momentum is constant and non-zero.