Answer:
See below
Step-by-step explanation:
images attached showing all working
a) The possible values of X are as follows
X = {0,1,2,3,4}
P(x) = P(X=x)
b) The cdf in this case, as in the F(x), comes out to be a step function graph on the basis of values obtained from the probability mass function.
c) To find out the probability when more women are interviewed than me, add together the matrices from when value of X is equal to 2, 3 and 4 (from part a).
Answer:
I have no idea
Step-by-step explanation:
Ok, so for this you're likely graphing in y=mx+b format (slope intercept). So to start, you'all first subtract 3x from the equation to get 6y=-3x+16. Now you'll divide the equation by 6 to get y alone. Your final equation will be y=-1/2x+16/6
Answer: it was online bank
Step-by-step explanation:
Answer:
√3 is irrational
Step-by-step explanation:
The location of the third point of a triangle can be found using a rotation matrix to transform the coordinates of the given points.
<h3 /><h3>Location of point C</h3>
With reference to the attached figure, the slope of line AC is √3, an irrational number. This means the line AC <em>never passes through a point with integer coordinates</em>. (Any point with integer coordinates would be on a line with rational slope.)
<h3>Equilateral triangle</h3>
The line segments making up an equilateral triangle are separated by an angle of 60°. If two vertices are on grid squares, the third must be a rotation of one of them about the other through an angle of 60°. The rotation matrix is irrational, so the rotated point must have irrational coordinates.
The math of it is this. For rotation of (x, y) counterclockwise 60° about the origin, the transformation matrix is ...
![\left[\begin{array}{cc}\cos(60^\circ)&\sin(60^\circ)\\-\sin(60^\circ)&\cos(60^\circ)\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}x'\\y'\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Ccos%2860%5E%5Ccirc%29%26%5Csin%2860%5E%5Ccirc%29%5C%5C-%5Csin%2860%5E%5Ccirc%29%26%5Ccos%2860%5E%5Ccirc%29%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%27%5C%5Cy%27%5Cend%7Barray%7D%5Cright%5D)
Cos(60°) is rational, but sin(60°) is not. For any non-zero rational values of x and y, the sum ...
cos(60°)·x + sin(60°)·y
will be irrational.
As in the attached diagram, if one of the coordinates of the rotated point (B) is zero, then one of the coordinates of its image (C) will be rational. The other image point coordinate cannot be rational.