Answer:
86.2 g/mol
Explanation:
Before you can find the molar mass, you first need to calculate the number of moles of the gas. To find this value, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
After you convert the volume from mL to L and the temperature from Celsius to Kelvin, you can use the equation to find the moles.
P = 760 mmHg R = 62.36 L*mmHg/mol*K
V = 250 mL / 1,000 = 0.250 L T = 20 °C + 273.15 = 293.15 K
n = ? moles
PV = nRT
(760 mmHg)(0.250 L) = n(62.36 L*mmHg/mol*K)(293.15 K)
190 = n(18280.834)
0.0104 = n
The molar mass represents the mass (g) of the gas per every 1 mole. Since you have been given a mass and mole value, you can set up a proportion to determine the molar mass.
<----- Proportion
<----- Cross-multiply
<----- Divide both sides by 0.0104
A small sample of methane burns, releasing 120.0 kJ of heat and doing 830.0 kJ of work. The total energy released is -950.0 kJ.
Energy is a property that is transferred to a physical system, recognizable in the performance of work and in the form of heat and light.
A small sample of methane undergoes combustion. As the hot gas mixture expands, it releases energy (E).
- It releases 120.0 kJ of heat. By convention, when heat is released, we assign it a negative sign. Thus, q = -120.0 kJ.
- It does 830.0 kJ of work. By convention, when the system does work on the surroundings, we assign it a negative sign. Thus, w = -830.0 kJ.
The change in the energy is the sum of the heat released and the work done.
ΔE = q + w = -120.0 kJ + (-830.0 kJ) = -950.0 kJ
A small sample of methane burns, releasing 120.0 kJ of heat and doing 830.0 kJ of work. The total energy released is -950.0 kJ.
Learn more about energy here: brainly.com/question/13881533
Answer:
Fire is something that's red and sorta orange is hot and can burn you but fire can be good and bad at some points for example fire can be used as a campfire,fireplace at home,and lighting candles. Fire is also very dangerous tho ,you can burn yourself if your not careful it can light your house on fire and that wouldn't be very safe. In simple words i would say fire is something that can have advantages and disadvantages.
Ahhh hope thats alright im on online classes but i wanted to help!!
Mass of Gold = 267.165 × 0.01552494829
⇒ 4.1477228099
The amount of heat(q) required to raise m grams of a substance-specific C from T1 to T2 is given by
q=m C (T2-T1) ........1
Given : q= 2.1200 J
the initial temperature of gold, T1 = 22.0Celcius
the final temperature of gold, T2 = 1064.4Celcius
specific heat of gold = 0.131
putting values in eq 1:
⇒ 2.1200 = m × 0.131 × (1064.4-22)
⇒ 2.1200 = m × 0.131 × 1042.4
⇒ 2.1200 / 136.5544
⇒ 0.01552494829
Since 1g= 0.01552494829 Pounds
Mass of Gold = 267.165 × 0.01552494829
⇒ 4.1477228099
Learn more about temperature here: brainly.com/question/11464844
#SPJ9