1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexgriva [62]
2 years ago
7

Drag each label to the correct location on the image

Physics
1 answer:
umka2103 [35]2 years ago
3 0

Answer:

you cant really give any answers because i cant tell u were to drag

You might be interested in
Which statements accurately describe mechanical waves​
AleksAgata [21]

Answer:

Explanation:

so a mechanical wave transfers energy through a medium but unlike other waves that move through very long distances

the distance of the mechanical wave is different

7 0
3 years ago
What is the car's speed at the bottom of the dip?The passengers in a roller coaster car feel 50% heavier thantheir true weight a
Rashid [163]

Answer:

v = 14 m/s

Explanation:

given,

radius of dip = 40 m

The passengers in a roller coaster car feel 50% heavier than their true weight.

Apparent weight

A = W + \dfrac{W}{2}

A =\dfrac{3W}{2}

A =\dfrac{3mg}{2}

When the car is at the bottom,  the weight will be acting downwards and the centripetal force will also be acting downward where as Normal force which is apparent weight will be acting in upward direction.

now,

N = m g + \dfrac{mv^2}{r}

\dfrac{3mg}{2} = m g + \dfrac{mv^2}{r}

\dfrac{mg}{2} = \dfrac{mv^2}{r}

v = \sqrt{\dfrac{rg}{2}}

v = \sqrt{\dfrac{40\times 9.8}{2}}

v = 14 m/s

8 0
3 years ago
Emboldened by the success of their late night keg pull in Exercise 61 above, our intrepid young scholars have decided to pay hom
alexdok [17]

Answer is answer

XD                                ssssss

5 0
3 years ago
Two protons are maintained at a separation of nm. Calculate the electric potential due to the two particles at the midpoint betw
Liono4ka [1.6K]

Answer:

The electric potential is approximately 5.8 V

The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero

Explanation:

The two protons can be considered as point charges. Therefore, the electric potential is given by the point charge potential:

\displaystyle{U=\frac{q}{4\pi \epsilon_0r}} (1)

where q is the charge of the particle, \epsilon_0 the electric permittivity of the vacuum (I assuming the two protons are in a vacuum) and r is the distance from the point charge to the point where the potential is being measured. Because the electric potential is an scalar, we can simply add the contribution of the two potentials in the midpoint between the protons. Thus:

\displaystyle{U_{midpoint}=\frac{q}{4\pi \epsilon_0r}}+\frac{q}{4\pi \epsilon_0r}}=\frac{q}{2\pi \epsilon_0r}}}

Substituting the values q=1.602 \cdot10^{-19}\ C, \displaystyle{\frac{1}{4\pi\epsilon_0}=8.99\cdot 10^9 N\cdot m^2\cdot C^{-2}} and r=0.5 \cdot 10^{-9} m we obtain:

\displaystyle{U_{midpoint}=\frac{q}{2\pi \epsilon_0r}}=5.759 \approx 5.8 V}

The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero.

6 0
3 years ago
Car A starts out traveling at 35.0 km/h and accelerates at 25.0 km/h2 for 15.0 min. Car B starts out traveling at 45.0 km/h and
lawyer [7]

1 kilometre=1000 metre

      1 hour = 3600 second

       1\ km/hr=\frac{1000}{3600} m/s

       1\ km/hr=\frac{5}{18} m/s

The initial velocity of car A is 35.0 km/hr i.e

                                         35.0\ km/hr=35*\frac{5}{18} m/s

                                                                   = 9.72 m/s

The initial velocity of car B is 45 km/hr =12.5 m/s

The initial velocity of car C is 32 km/hr = 8.89 m/s

The initial velocity of car D is 110 km/hr=30.56 m/s

The acceleration of car A is given as  25\ km/hr^2

                                            =\ 25*\frac{1000}{3600*3600} m/s^2

                                            =0.00192901234 m/s^2

The time taken by car A = 15 min.

From equation of kinematics we know that-

                                 v= u+at      [Here v is the final velocity and a is the acceleration and t is the time]

Final velocity of A,  v = 9.72 m/s +[0.00192901234×15×60]m/s

                                   =11.456111106 m/s

The acceleration of B is given as    15\ km/hr^2

                                    =0.00115740740740 m/s^2

The time taken by car B =20 min

The final velocity of B is -

                             v= u+at

                               = u-at    [Here a is negative due to deceleration]

                               =12.5 m/s +[0.0011574074074×20×60]

                               =13.8888888.....

                               =13.9

The acceleration of C is given as    40\ km/hr^2          

                                                            =\ 0.003086419753 m/s^2

The time taken by car C =30 min

The final velocity of C is-

                                v = u+at

                                   =8.89 m/s+[0.003086419753×30×60] m/s

                                   =14.4455555555..m/s

                                   =14.45 m/s

The car C is decelerating.The deceleration is given as-  60\ km/hr^2

                                                                      =0.0046296296296m/s^2

The time taken by car D= 45 min.

The final velocity of the car D is-

                     v =u+at

                        =30.56 -[0.00462962962962×45×60]m/s

                        =18.06 m/s

Hence from above we see that the magnitude of final velocity car C and B is close to 15 m/s. The car C is very close as compared to car B.

                 


3 0
3 years ago
Other questions:
  • What happens to the amplitude of the resultant wave when two sound waves with equal amplitude constructively interfere?
    5·2 answers
  • Please help me with this question​
    12·1 answer
  • What type of energy best represents the strength of an ionic bond? ...?
    10·2 answers
  • The type of energy that depends on position is called
    12·2 answers
  • Write physical quantities and its unit​
    10·1 answer
  • If a car is rounding a flat curve on a highway, what is the centripetal force on the car?
    12·1 answer
  • How does a vector quantity differ from a scalar?
    12·2 answers
  • Nuclear sizes are expressed in a unit named
    12·1 answer
  • How long would it take 150kg person to hit after the same jump?
    8·1 answer
  • A current is detected in a photoelectric effect experiment when an electrode is illuminated with green light. Will a current als
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!