1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marshall27 [118]
3 years ago
7

A bowling ball moves 18 meters every 2 seconds down the lane at a bowling alley. What is the speed of the bowling ball?

Physics
1 answer:
Strike441 [17]3 years ago
3 0

Answer:

9m/s

Explanation:

18/2 = 9m/s

You might be interested in
The ball has 7.35 joules of potential energy at position B. At position A, all of the energy changes to kinetic energy. The velo
Lina20 [59]
I assume that the ball is stationary (v=0) at point B, so its total energy is just potential energy, and it is equal to 7.35 J. 
At point A, all this energy has converted into kinetic energy, which is:
K= \frac{1}{2}mv^2
And since K=7.35 J, we can find the velocity, v:
v= \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 7.35 J}{1.5 kg} }=3.1 m/s
3 0
3 years ago
The emf induced in a coil that is rotating in a magnetic field will be at a maximum at which moment?
adelina 88 [10]
TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.

To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:

e = -N•dI/dt; dI = ABcos(theta)

where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.

Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

Hope this helps!
6 0
4 years ago
It was once recorded that a Jaguar
Artyom0805 [142]

Answer:

71.85 m/s

Explanation:

Given the following :

Length of skid marks left by jaguar (s) = 290 m

Skidding Acceleration (a) = - 8.90m/s²

Final velocity of jaguar (v) = 0

Speed of Jaguar before it Began to skid =?

Hence, initial speed of jaguar could be obtained using the formula :

v² = u² + 2as

Where

v = final speed of jaguar ; u = initial speed of jaguar(before it Began to skid) ; a = acceleration of jaguar ; s = distance /length of skid marks left by jaguar

0² = u² + (2 × (-8.90) × 290)

0 = u² + (-5,162)

u² = 5162

Take the square root of both sides

u = √5162

u = 71.847 m/s

u = 71.85m/s

6 0
3 years ago
(8c8p49) A 115g Frisbee is thrown from a point 1.00 m above the ground with a speed of 12.00 m/s. When it has reached a height o
IgorLugansk [536]

Answer:

The work done on the Frisbee is 1.36 J.

Explanation:

Given that,

Mass of Frisbee, m = 115 g = 0.115 kg

Initial speed of Frisbee, u = 12 m/s at a point 1 m above the ground

Final speed of Frisbee , v = 10.9674 m/s when it has reached a height of 2.00 m. Let W is the work done on the Frisbee by its weight. According to work energy theorem, the work done is equal to the change in its kinetic energy. So,

W=\dfrac{1}{2}m(v^2-u^2)\\\\W=\dfrac{1}{2}\times0.115\times\left((10.9674)^{2}-(12)^{2})\right)\\\\W=-1.36\ J

So, the work done on the Frisbee is 1.36 J. Hence, this is the required solution.

3 0
3 years ago
Read 2 more answers
Which effects result from the influence of media and technology on children
Salsk061 [2.6K]
Can cause children into getting cyber bullying, being a thief, sexual behavior, anxiety, and depression
6 0
4 years ago
Other questions:
  • A joger travels 8.0 kilometers in 1.25 hours what is the average speed?
    8·2 answers
  • Jessica and Martin start riding their bicycles towards each other at 2 pm. At 2 pm, they are 25 miles apart. Jessica rides her b
    12·1 answer
  • An apple weighs at 1N. the net force on the apple when it is in free fall is?
    11·1 answer
  • The current limiting property of an inductor is called _____
    9·2 answers
  • A cubic meter (m³) is ______ a cubic centimeter (cm³).
    13·1 answer
  • 3. A ray of light incident on one face of an equilateral glass prism is refracted in such a way that it emerges from the opposit
    9·1 answer
  • A tray filled with ice is removed from the freezer. After a short period of time, the ice begins to melt.
    13·1 answer
  • A lady walks 10 m to the north, then she turns and continues walking 30 m due east.
    6·1 answer
  • Which of the following is an example of a healthy behavior?
    10·1 answer
  • Motion.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!