Answer:
a. 750Hz, b. 4.0ppm, c. 600Hz
Explanation:
The Downfield Shift (Hz) is given by the formula
Downfield Shift (Hz) = Chemical Shift (ppm) x Spectrometer Frequency (Hz)
Using the above formula we can solve all three parts easily
a. fspec = 300 MHz, Chem. Shift = 2.5ppm, 1MHz = 10⁶ Hz, 1ppm (parts per million) = 10⁻⁶
Downfield Shift (Hz) = 2.5ppm x 300MHz x (1Hz/10⁶MHz) x (10⁻⁶/1ppm)
Downfield Shift = 750 Hz
The signal is at 750Hz Downfield from TMS
b. Downfield Shift = 1200 Hz, Chemical Shift = ?
Chemical Shift = Downfield shift/Spectrometer Frequency
Chemical Shift = (1200Hz/300MHz) x (1ppm/10⁻⁶) = 4.0 ppm
The signal comes at 4.0 ppm
c. Separation of 2ppm, Downfield Shift = ?
Downfield Shift (Hz) = 2(ppm) x 300 (MHz) x (1Hz/10⁶MHz) x (10⁻⁶/1ppm) = 600 Hz
The two peaks are separated by 600Hz
The answer is; liquid phase
The characteristics described in the question are those of a liquid. The forces between liquid particles are weaker than the forces between solid particles because the particles are further apart. The particles are not held in a fixed position in the structure hence it can flow and take the shape of the container in which it is in.
I believe that number 27 is A
Answer:
Option A. The polar solvent molecule surrounds the positive sodium ions and the negative chloride ions.
Explanation:
When a salt say NaCl dissolved in water, the solvent molecules surround both the Na+ and Cl-. The Na+ are surrounded by OH- and the Cl- are surrounded by H+.